Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov;95(3):618-29.
doi: 10.1111/j.1471-4159.2005.03385.x. Epub 2005 Aug 31.

The structure and proteolytic processing of Cbln1 complexes

Affiliations
Free article

The structure and proteolytic processing of Cbln1 complexes

Dashi Bao et al. J Neurochem. 2005 Nov.
Free article

Abstract

The hexadecapeptide cerebellin is present in the brains of many vertebrate species and is derived from a larger protein, Cbln1 (cerebellin 1 precursor protein). Although cerebellin has features of a neuropeptide, Cbln1 belongs to the C1q/tumor necrosis factor superfamily of secreted proteins, suggesting that it is the biologically active molecule and the proteolytic events that generate cerebellin serve another function. Therefore, we assessed whether Cbln1 undergoes proteolytic processing and determined what consequences the cleavage events necessary to produce cerebellin have on the structure of Cbln1. Substantial degradation of Cbln1 was evident in the synaptic compartment of cerebellum and lysates of cultured cerebellar neurons and cells transfected with Cbln1 expression vectors. However, only uncleaved Cbln1 containing the cerebellin motif was released and assembled into hexameric complexes. Using yeast two hybrid and mammalian expression systems we show that the cleavages required to produce cerebellin influence the subunit stoichiometry of Cbln1 complexes. Cleavage at the N-terminus of the cerebellin sequence in Cbln1 yields trimeric complexes by separating the trimer-mediating C-terminal C1q domain from conserved N-terminal cysteine residues that mediate higher order oligomerization. Cleavage at the C-terminus of the cerebellin motif disrupts the C1q domain and abolishes subunit interactions. Functional implications of these data are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources