Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jan;20(1):80-99.
doi: 10.1210/me.2004-0389. Epub 2005 Sep 1.

OX1 orexin receptors activate extracellular signal-regulated kinase in Chinese hamster ovary cells via multiple mechanisms: the role of Ca2+ influx in OX1 receptor signaling

Affiliations

OX1 orexin receptors activate extracellular signal-regulated kinase in Chinese hamster ovary cells via multiple mechanisms: the role of Ca2+ influx in OX1 receptor signaling

Sylwia Ammoun et al. Mol Endocrinol. 2006 Jan.

Abstract

Activation of OX1 orexin receptors heterologously expressed in Chinese hamster ovary (CHO) cells led to a rapid, strong, and long-lasting increase in ERK phosphorylation (activation). Dissection of the signal pathways to ERK using multiple inhibitors and dominant-negative constructs indicated involvement of Ras, protein kinase C, phosphoinositide-3-kinase, and Src. Most interestingly, Ca2+ influx appeared central for the ERK response in CHO cells, and the same was indicated in recombinant neuro-2a cells and cultured rat striatal neurons. Detailed investigations in CHO cells showed that inhibition of the receptor- and store-operated Ca2+ influx pathways could fully attenuate the response, whereas inhibition of the store-operated Ca2+ influx pathway alone or the Ca2+ release was ineffective. If the receptor-operated pathway was blocked, an exogenously activated store-operated pathway could take its place and restore the coupling of OX1 receptors to ERK. Further experiments suggested that Ca2+ influx, as such, may not be required for ERK phosphorylation, but that Ca2+, elevated via influx, acts as a switch enabling OX1 receptors to couple to cascades leading to ERK phosphorylation, cAMP elevation, and phospholipase C activation. In conclusion, the data suggest that the primary coupling of orexin receptors to Ca2+ influx allows them to couple to other signal pathways; in the absence of coupling to Ca2+ influx, orexin receptors can act as signal integrators by taking advantage of other Ca2+ influx pathways.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources