Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2006 Jan;100(1):67-75.
doi: 10.1152/japplphysiol.00959.2005. Epub 2005 Sep 1.

H2-receptor-mediated vasodilation contributes to postexercise hypotension

Affiliations
Free article
Randomized Controlled Trial

H2-receptor-mediated vasodilation contributes to postexercise hypotension

Jennifer L McCord et al. J Appl Physiol (1985). 2006 Jan.
Free article

Abstract

The early (approximately 30 min) postexercise hypotension response after a session of aerobic exercise is due in part to H1-receptor-mediated vasodilation. The purpose of this study was to determine the potential contribution of H2-receptor-mediated vasodilation to postexercise hypotension. We studied 10 healthy normotensive men and women (ages 23.7 +/- 3.4 yr) before and through 90 min after a 60-min bout of cycling at 60% peak O2 uptake on randomized control and H2-receptor antagonist days (300 mg oral ranitidine). Arterial pressure (automated auscultation), cardiac output (acetylene washin) and femoral blood flow (Doppler ultrasound) were measured. Vascular conductance was calculated as flow/mean arterial pressure. Sixty minutes postexercise on the control day, femoral (delta62.3 +/- 15.6%, where Delta is change; P < 0.01) and systemic (delta13.8 +/- 5.3%; P = 0.01) vascular conductances were increased, whereas mean arterial pressure was reduced (Delta-6.7 +/- 1.1 mmHg; P < 0.01). Conversely, 60 min postexercise with ranitidine, femoral (delta9.4 +/- 9.2%; P = 0.34) and systemic (delta-2.8 +/- 4.8%; P = 0.35) vascular conductances were not elevated and mean arterial pressure was not reduced (delta-2.2 +/- 1.3 mmHg; P = 0.12). Furthermore, postexercise femoral and systemic vascular conductances were lower (P < 0.05) and mean arterial pressure was higher (P = 0.01) on the ranitidine day compared with control. Ingestion of ranitidine markedly reduces vasodilation after exercise and blunts postexercise hypotension, suggesting H2-receptor-mediated vasodilation contributes to postexercise hypotension.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources