Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec;146(12):5540-4.
doi: 10.1210/en.2005-0579. Epub 2005 Sep 1.

Adenosine 5'-triphosphate-dependent vitamin D sterol binding to heat shock protein-70 chaperones

Affiliations

Adenosine 5'-triphosphate-dependent vitamin D sterol binding to heat shock protein-70 chaperones

Rene Chun et al. Endocrinology. 2005 Dec.

Abstract

Chaperone proteins in the heat shock protein-70 family possess endogenous ATP binding and ATPase activity and interact with intracellular protein substrates in an ATP-dependent manner; the hydrolysis of ATP to ADP results in an increase in the affinity of the chaperone for protein substrates. Heat shock protein-70s can also specifically interact with 25-hydroxylated vitamin D metabolites. Using constitutively expressed heat shock protein-70 (hsc70) as chaperone, here we demonstrate that vitamin D metabolite binding to hsc70 is also ATP dependent. Transient overexpression of an hsc70-green fluorescent protein chimeric construct in primate kidney cells resulted in a 6-fold increase in specific, extractable 25-hydroxyvitamin D(3) binding. When ATPase capability of hsc70 was disabled, this increase was completely blocked. In solution, the binding of 25-hydroxylated vitamin D metabolites to hsc70 was significantly increased (P < 0.01) in the presence of ATP and a nonmetabolizable ATP analog. The ATP-directed increase in specific binding resulted from an increase in the abundance of relatively high-affinity hormone-binding sites (K(d), approximately 0.24 nM). These results suggest that ATP hydrolysis to ADP would favor the release of vitamin D from a donor hsc70 molecule at a time when an hsc70-bound acceptor protein substrate is anchored to the chaperone with relative avidity. We theorize that the endogenous ATPase activity of hsc70 promotes the transfer of vitamin D sterols to other intracellular vitamin D binding proteins, such as the vitamin D receptor and vitamin D hydroxylases, to which hsc70 is known to bind.

PubMed Disclaimer

Publication types