Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan;139(1):129-33.
doi: 10.1007/s10517-005-0230-5.

Cardiotropic effect of extracardiac transplantation of embryonic human myoblasts to mice with bradycardia: various effects of cell material

Affiliations

Cardiotropic effect of extracardiac transplantation of embryonic human myoblasts to mice with bradycardia: various effects of cell material

V N Yarygin et al. Bull Exp Biol Med. 2005 Jan.

Abstract

Animals with bradycardia were detected in reproductive colony of mdx mice. Low pulse rate was associated with poor survival and predisposition to sudden death, but did not directly depend on the presence of dystrophin mutant gene or animal age. Heart rate increased in old mice with bradycardia after extracardial, intramuscular, and intravenous injection of human embryonic myoblasts. Stable normalization of the pulse was observed 2 weeks after transplantation, but early peak of heart rate was observed as early as 24 h after cell transplantation. Cell suspensions, which could contain stem cells (blood mononuclears and CD34+ lymphocytes), also corrected heart rhythm. Unlike the effect of myoblasts, cardiotropic effect of mononuclears was preceded by a period of tachycardia, while the effect of CD34+ lymphocytes was very unstable. The cardiotropic effect of myoblasts was combined with life span prolongation and certain rejuvenation in some animals. Erythrocytes and supernatant obtained during blood cell fractionation did not modify the heart rhythm in mice with bradycardia. After injection of myoblasts to mice with rare and normal pulses serum creatine kinase activity decreased with different rates. These data attest to a variety of biological effects of stem cells and/or their derivatives and to ambiguous mechanisms of these effects.

PubMed Disclaimer

LinkOut - more resources