Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jan 1:11:126-35.
doi: 10.2741/1785.

Stem cell factor (SCF)-kit mediated phosphatidylinositol 3 (PI3) kinase signaling during mammalian oocyte growth and early follicular development

Affiliations
Review

Stem cell factor (SCF)-kit mediated phosphatidylinositol 3 (PI3) kinase signaling during mammalian oocyte growth and early follicular development

Kui Liu. Front Biosci. .

Abstract

The bi-directional communication between mammalian oocytes and their surrounding granulosa cells has been shown to be crucial for ovarian follicular development. Studies on molecules derived from the oocytes, such as growth differentiation factor-9 (GDF-9) and bone morphogenetic protein-15 (BMP-15), have attracted great interest during the past decade, and it is common knowledge nowadays that these molecules participate in the bi-directional dialogue between the oocytes and their surrounding granulosa cells as well as follicular development. However, signaling molecules and pathways inside mammalian oocytes that control oocyte growth and early development of ovarian follicles, which may be monitored by factors produced by granulosa cells, have not been studied extensively. Based on our own data as well as ovarian phenotypes observed in several gene modified mice strains that were generated for studies of signal transduction, immunology and cancer, the current review focuses on the key features of the activation of oocyte phosphatidylinositol 3 kinase (PI3 kinase) pathway and its possible roles during mammalian oocyte growth and follicular development. We propose that the cascade from the granulosa cell-produced stem cell factor (SCF) to the oocyte surface SCF receptor Kit, and to the oocyte PI3 kinase pathway, may play an important role in the regulation of growth rate of mammalian oocytes, as well as in the activation and development of ovarian follicles.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources