Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov 4;280(44):37289-96.
doi: 10.1074/jbc.M504260200. Epub 2005 Sep 7.

Phosphodiesterase activity of alkaline phosphatase in ATP-initiated Ca(2+) and phosphate deposition in isolated chicken matrix vesicles

Affiliations
Free article

Phosphodiesterase activity of alkaline phosphatase in ATP-initiated Ca(2+) and phosphate deposition in isolated chicken matrix vesicles

Le Zhang et al. J Biol Chem. .
Free article

Abstract

Inorganic pyrophosphate is a potent inhibitor of bone mineralization by preventing the seeding of calcium-phosphate complexes. Plasma cell membrane glycoprotein-1 and tissue nonspecific alkaline phosphatase were reported to be antagonistic regulators of mineralization toward inorganic pyrophosphate formation (by plasma cell membrane glycoprotein-1) and degradation (by tissue nonspecific alkaline phosphatase) under physiological conditions. In addition, they possess broad overlapping enzymatic functions. Therefore, we examined the roles of tissue nonspecific alkaline phosphatase within matrix vesicles isolated from femurs of 17-day-old chick embryos, under conditions where these both antagonistic and overlapping functions could be evidenced. Addition of 25 microM ATP significantly increased duration of mineralization process mediated by matrix vesicles, while supplementation of mineralization medium with levamisole, an alkaline phosphatase inhibitor, reduces the ATP-induced retardation of mineral formation. Phosphodiesterase activity of tissue nonspecific alkaline phosphatase for bis-p-nitrophenyl phosphate was confirmed, the rate of this phosphodiesterase activity is in the same range as that of phosphomonoesterase activity for p-nitrophenyl phosphate under physiological pH. In addition, tissue nonspecific alkaline phosphatase at pH 7.4 can hydrolyze ADPR. On the basis of these observations, it can be concluded that tissue nonspecific alkaline phosphatase, acting as a phosphomonoesterase, could hydrolyze free phosphate esters such as pyrophosphate and ATP, while as phosphodiesterase could contribute, together with plasma cell membrane glycoprotein-1, in the production of pyrophosphate from ATP.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources