Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov;19(13):1863-5.
doi: 10.1096/fj.04-2864fje. Epub 2005 Sep 8.

Calorie restriction protects against age-related rat aorta sclerosis

Affiliations

Calorie restriction protects against age-related rat aorta sclerosis

Laura Castello et al. FASEB J. 2005 Nov.

Abstract

Many theories have been advanced to account for the ageing process, among which the free radical theory deserves much attention. Numerous studies have also shown an association between tissue fibrosis and oxidative stress. Of note, fibrosis may be considered a significant index of tissue ageing. Calorie restriction (CR) has been demonstrated to maintain many physiological processes in a youthful state until a very advanced age. However the anti-ageing mechanisms of CR are still not fully understood. We thus evaluated the effect of CR on oxidative damage and its relationship with fibrosis during ageing. We found a significant increase of both oxidative stress and fibrosis parameters in the aortae from aged vs. young rats. CR reversed both phenomena. CR also protected against the age-associated increase of Jun-N-terminal kinase and p-38 activities, involved in TGFbeta1 expression and signaling. On the contrary, extracellular regulated kinases did not show any age-related change. CR similarly reversed the age-related increase of AP-1 DNA binding activity and the AP-1-dependent increase of vimentin gene expression. In parallel, CR reversed the age-related morphological alterations of the aorta wall cell composition. These data further support the relationship between oxidative stress and fibrosis in different diseases and during ageing. The protection exerted by CR against fibrosclerosis might be due to a decrease of oxidative stress, with consequent decreased MAPK activity and down-regulation of AP-1 activation and of TGFbeta1 expression and signaling.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources