Functional relevance of ceruloplasmin mutations in Parkinson's disease
- PMID: 16150804
- DOI: 10.1096/fj.04-3486fje
Functional relevance of ceruloplasmin mutations in Parkinson's disease
Abstract
Increased iron levels of the substantia nigra and the discovery of ceruloplasmin mutations in patients with Parkinson's disease (PD) imply impaired iron metabolism in this neurodegenerative disorder. Ceruloplasmin has ferroxidase activity oxidizing iron(II) to iron(III). In the present study, we analyzed the amount of ceruloplasmin, iron, ferritin, and transferrin and the ceruloplasmin ferroxidase activity in serum of patients with the diagnosis of PD carrying the ceruloplasmin mutations I63T, D544E, and R793H. The impact of these missense mutations on the biosynthesis of holo-ceruloplasmin was investigated in cell culture experiments. Functional relevance was found for the ceruloplasmin mutations I63T and D544E. In vivo, the I63T mutation resulted in half the normal ceruloplasmin concentration and markedly reduced ferroxidase activity in serum from a heteroallelic PD patient. In cell culture, the I63T glycosylphosphatidylinositol (GPI)-linked ceruloplasmin isoform was retained in the endoplasmatic reticulum of human embryonic kidney cells. Furthermore, the D544E polymorphism resulted in significantly reduced serum ceruloplasmin levels and ferroxidase activity in heteroallelic patients and in expression of mainly apo-ceruloplasmin in cell culture. Our studies indicate that altered activity of ceruloplasmin may present a vulnerability factor for iron induced oxidative stress in PD.
Similar articles
-
Decreased serum ceruloplasmin levels characteristically aggravate nigral iron deposition in Parkinson's disease.Brain. 2011 Jan;134(Pt 1):50-8. doi: 10.1093/brain/awq319. Epub 2010 Nov 24. Brain. 2011. PMID: 21109502
-
Ceruloplasmin gene variations and substantia nigra hyperechogenicity in Parkinson disease.Neurology. 2004 Nov 23;63(10):1912-7. doi: 10.1212/01.wnl.0000144276.29988.c3. Neurology. 2004. PMID: 15557511
-
Iron transport in Parkinson's disease.Parkinsonism Relat Disord. 2009 Dec;15 Suppl 3:S209-11. doi: 10.1016/S1353-8020(09)70816-8. Parkinsonism Relat Disord. 2009. PMID: 20082992
-
Aceruloplasminemia: an update.Int Rev Neurobiol. 2013;110:125-51. doi: 10.1016/B978-0-12-410502-7.00007-7. Int Rev Neurobiol. 2013. PMID: 24209437 Review.
-
Iron metabolism and Parkinson's disease.Mov Disord. 1998;13 Suppl 1:39-45. Mov Disord. 1998. PMID: 9613717 Review.
Cited by
-
Intracellular iron transport and storage: from molecular mechanisms to health implications.Antioxid Redox Signal. 2008 Jun;10(6):997-1030. doi: 10.1089/ars.2007.1893. Antioxid Redox Signal. 2008. PMID: 18327971 Free PMC article. Review.
-
Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism.Brain Res Bull. 2017 Jul;133:12-30. doi: 10.1016/j.brainresbull.2017.03.009. Epub 2017 Mar 21. Brain Res Bull. 2017. PMID: 28341600 Free PMC article. Review.
-
Oxidative Stress in Parkinson's Disease: Potential Benefits of Antioxidant Supplementation.Oxid Med Cell Longev. 2020 Oct 12;2020:2360872. doi: 10.1155/2020/2360872. eCollection 2020. Oxid Med Cell Longev. 2020. PMID: 33101584 Free PMC article. Review.
-
Conservative iron chelation for neurodegenerative diseases such as Parkinson's disease and amyotrophic lateral sclerosis.J Neural Transm (Vienna). 2020 Feb;127(2):189-203. doi: 10.1007/s00702-019-02138-1. Epub 2020 Jan 7. J Neural Transm (Vienna). 2020. PMID: 31912279 Review.
-
Multiple motor system dysfunction associated with a heterozygous ceruloplasmin gene mutation.J Neurol. 2008 Jul;255(7):1083-4. doi: 10.1007/s00415-008-0823-9. Epub 2008 Feb 25. J Neurol. 2008. PMID: 18293024 No abstract available.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases