Core transcriptional regulatory circuitry in human embryonic stem cells
- PMID: 16153702
- PMCID: PMC3006442
- DOI: 10.1016/j.cell.2005.08.020
Core transcriptional regulatory circuitry in human embryonic stem cells
Abstract
The transcription factors OCT4, SOX2, and NANOG have essential roles in early development and are required for the propagation of undifferentiated embryonic stem (ES) cells in culture. To gain insights into transcriptional regulation of human ES cells, we have identified OCT4, SOX2, and NANOG target genes using genome-scale location analysis. We found, surprisingly, that OCT4, SOX2, and NANOG co-occupy a substantial portion of their target genes. These target genes frequently encode transcription factors, many of which are developmentally important homeodomain proteins. Our data also indicate that OCT4, SOX2, and NANOG collaborate to form regulatory circuitry consisting of autoregulatory and feedforward loops. These results provide new insights into the transcriptional regulation of stem cells and reveal how OCT4, SOX2, and NANOG contribute to pluripotency and self-renewal.
Figures





Comment in
-
Chipping away at the embryonic stem cell network.Cell. 2005 Sep 23;122(6):828-30. doi: 10.1016/j.cell.2005.09.002. Cell. 2005. PMID: 16179251
References
-
- Abeyta MJ, Clark AT, Rodriguez RT, Bodnar MS, Pera RA, Firpo MT. Unique gene expression signatures of independently derived human embryonic stem cell lines. Hum Mol Genet. 2004;13:601–608. - PubMed
-
- Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell. 2005;121:645–657. - PubMed
-
- Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials