Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr;8(2):83-91.
doi: 10.1080/10255840500167895.

Electromechanical response of articular cartilage in indentation--considerations on the determination of cartilage properties during arthroscopy

Affiliations

Electromechanical response of articular cartilage in indentation--considerations on the determination of cartilage properties during arthroscopy

L P Li et al. Comput Methods Biomech Biomed Engin. 2005 Apr.

Abstract

A finite element formulation of streaming potentials in articular cartilage was incorporated into a fibril-reinforced model using the commercial software ABAQUS. This model was subsequently used to simulate interactions between an arthroscopic probe and articular cartilage in a knee joint. Fibril reinforcement was found to account for large fluid pressure at considerable strain rates, as has been observed in un-confined compression. Furthermore, specific electromechanical responses were associated with specific changes in tissue properties that occur with cartilage degeneration. For example, the strong strain-rate dependence of the load response was only observed when the collagen network was intact. Therefore, it is possible to use data measured during arthroscopy to evaluate the degree of cartilage degeneration and the source causing changed properties. However, practical problems, such as the difficulty of controlling the speed of the hand-held probe, may greatly reduce the reliability of such evaluations. The fibril-reinforced electromechanical model revealed that high-speed transient responses were associated with the collagen network, and equilibrium response was primarily determined by proteoglycan matrix. The results presented here may be useful in the application of arthroscopic tools for evaluating cartilage degeneration, for the proper interpretation of data, and for the optimization of data collection during arthroscopy.

PubMed Disclaimer

Publication types