Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005:244:69-94.
doi: 10.1016/S0074-7696(05)44002-4.

Maintenance of Golgi apparatus structure in the face of continuous protein recycling to the endoplasmic reticulum: making ends meet

Affiliations
Review

Maintenance of Golgi apparatus structure in the face of continuous protein recycling to the endoplasmic reticulum: making ends meet

Brian Storrie. Int Rev Cytol. 2005.

Abstract

I focus here on the Golgi apparatus and the dynamic relationship between the Golgi apparatus, the central organelle of the secretory pathway, and the endoplasmic reticulum (ER). The proteins and lipids of the Golgi apparatus originate in the ER, and cargo proteins and lipids that also originate in the ER are processed and sorted within the Golgi apparatus. The Golgi apparatus is indeed the central organelle of the secretory pathway. Surprisingly, many, if not all, of the proteins and accompanying lipids of the Golgi apparatus cycle continuously between the Golgi and the ER. Neither the Cisternal Maturation nor the Vesicular Transport/Stable Compartment model of Golgi apparatus function predicts continuous cycling of Golgi resident proteins through the ER. Evidence for this cycling comes from multiple experimental approaches, including ER-exit block-revealed accumulation of recycled Golgi resident proteins in the ER, evidence for exchange of green fluorescent protein (GFP)-tagged Golgi proteins or their analogues between Golgi and ER pools, and cisternal rab overexpression-induced redistribution of Golgi resident proteins to the ER. The implications of Golgi protein cycling for the maintenance of Golgi structure in the interphase mammalian cell are discussed. The challenge for the future is to put Golgi resident protein cycling pathway(s) to protein machinery and to characterize the cumulative, weak, dynamic interactions that hold the Golgi apparatus together. In doing so, new paradigms of organelle biogenesis will emerge.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources