Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Sep 21;53(19):7565-70.
doi: 10.1021/jf0511603.

1-Methylcyclopropene interactions with diphenylamine on diphenylamine degradation, alpha-farnesene and conjugated trienol concentrations, and polyphenol oxidase and peroxidase activities in apple fruit

Affiliations

1-Methylcyclopropene interactions with diphenylamine on diphenylamine degradation, alpha-farnesene and conjugated trienol concentrations, and polyphenol oxidase and peroxidase activities in apple fruit

J M R Apollo Arquiza et al. J Agric Food Chem. .

Abstract

1-Methylcyclopropene (1-MCP) is a new technology that is applied commercially to inhibit ethylene action in apple fruit, but its interactions with existing technologies such as diphenylamine (DPA) for control of superficial scald development in fruit during and after storage is unknown. To investigate possible interactions between 1-MCP and DPA, Delicious apples were untreated or treated with 2 g L(-1) DPA, and then with or without 1 microL L(-1) 1-MCP. Ethylene production and respiration rates of fruit were measured immediately following treatment, and fruit was stored at 0.5 degrees C for 12 weeks. Internal ethylene concentrations (IEC), alpha-farnesene and conjugated trienol (CTol) concentrations, activities of peroxidase and polyphenol oxidase (PPO), and DPA levels in the skin of the fruit were measured at intervals during storage. 1-MCP reduced the rate of DPA loss from peel tissue so that by 12 weeks of storage concentrations of the chemical were 25% higher than in untreated fruit. 1-MCP, with and without DPA, markedly inhibited ethylene production and respiration rates, maintained low IEC and alpha-farnesene and CTol concentrations, while DPA had little effect on these factors except inhibition of CTol accumulation. Treatment effects on peroxidase and PPO activities were inconsistent.

PubMed Disclaimer

Publication types

LinkOut - more resources