Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct;20(10):1828-36.
doi: 10.1359/JBMR.050610. Epub 2005 Jun 20.

Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk

Affiliations
Free article

Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk

Masako Ito et al. J Bone Miner Res. 2005 Oct.
Free article

Abstract

We applied MDCT for in vivo evaluation of the microarchitecture of human vertebrae. Microstructure parameters, such as structure model index, Euler's number, and bone volume fraction, revealed higher relative risk for prevalent vertebral fracture than did BMD obtained by DXA. Thus, microstructure analysis by MDCT, together with simultaneously obtained volumetric BMD values, is useful for clinical assessment of fracture risk.

Introduction: BMD measurement by DXA alone has limitations in predicting fracture, and methods for clinical assessment of bone quality, such as microstructure, are awaited. This study was undertaken to examine the applicability of multidetector row CT (MDCT) for in vivo evaluation of trabecular microstructure.

Materials and methods: Optimal conditions for MDCT scanning were determined at a spatial resolution of 250 x 250 x 500 mum, using muCT data of excised human vertebra specimens as a reference. We analyzed the trabecular microstructure of the vertebrae of 82 postmenopausal women (55-76 years old), including 39 women with and 43 without a recent vertebral fracture.

Results: Microstructure indices obtained by MDCT scanning revealed higher relative risk for prevalent vertebral fracture (OR: 16.0 for structure model index, 13.6 for bone volume fraction, and 13.1 for Euler's number) than did spinal BMD obtained by DXA (OR: 4.8). MDCT could also provide volumetric BMD data, which had higher diagnostic value (OR: 12.7) than did DXA.

Conclusion: Vertebral microarchitecture can be visualized by MDCT, and microstructure parameters obtained by MDCT, together with volumetric BMD, provided better diagnostic performance for assessing fracture risk than DXA measurement.

PubMed Disclaimer

Comment in

  • Radiation exposure in bone measurements.
    Beaupré GS. Beaupré GS. J Bone Miner Res. 2006 May;21(5):803; author reply 804. doi: 10.1359/jbmr.060213. J Bone Miner Res. 2006. PMID: 16734399 No abstract available.

Publication types