Lactate racemization as a rescue pathway for supplying D-lactate to the cell wall biosynthesis machinery in Lactobacillus plantarum
- PMID: 16166538
- PMCID: PMC1251571
- DOI: 10.1128/JB.187.19.6750-6761.2005
Lactate racemization as a rescue pathway for supplying D-lactate to the cell wall biosynthesis machinery in Lactobacillus plantarum
Abstract
Lactobacillus plantarum is a lactic acid bacterium that produces d- and l-lactate using stereospecific NAD-dependent lactate dehydrogenases (LdhD and LdhL, respectively). However, reduction of glycolytic pyruvate by LdhD is not the only pathway for d-lactate production since a mutant defective in this activity still produces both lactate isomers (T. Ferain, J. N. Hobbs, Jr., J. Richardson, N. Bernard, D. Garmyn, P. Hols, N. E. Allen, and J. Delcour, J. Bacteriol. 178:5431-5437, 1996). Production of d-lactate in this species has been shown to be connected to cell wall biosynthesis through its incorporation as the last residue of the muramoyl-pentadepsipeptide peptidoglycan precursor. This particular feature leads to natural resistance to high concentrations of vancomycin. In the present study, we show that L. plantarum possesses two pathways for d-lactate production: the LdhD enzyme and a lactate racemase, whose expression requires l-lactate. We report the cloning of a six-gene operon, which is involved in lactate racemization activity and is positively regulated by l-lactate. Deletion of this operon in an L. plantarum strain that is devoid of LdhD activity leads to the exclusive production of l-lactate. As a consequence, peptidoglycan biosynthesis is affected, and growth of this mutant is d-lactate dependent. We also show that the growth defect can be partially restored by expression of the d-alanyl-d-alanine-forming Ddl ligase from Lactococcus lactis, or by supplementation with various d-2-hydroxy acids but not d-2-amino acids, leading to variable vancomycin resistance levels. This suggests that L. plantarum is unable to efficiently synthesize peptidoglycan precursors ending in d-alanine and that the cell wall biosynthesis machinery in this species is specifically dedicated to the production of peptidoglycan precursors ending in d-lactate. In this context, the lactate racemase could thus provide the bacterium with a rescue pathway for d-lactate production upon inactivation or inhibition of the LdhD enzyme.
Figures






References
-
- Arthur, M., F. Depardieu, P. Reynolds, and P. Courvalin. 1996. Quantitative analysis of the metabolism of soluble cytoplasmic peptidoglycan precursors of glycopeptide-resistant enterococci. Mol. Microbiol. 21:33-44. - PubMed
-
- Aukrust, T., M. B. Brurberg, and I. F. Nes. 1995. Transformation of Lactobacillus by electroporation. Methods Mol. Biol. 47:201-208. - PubMed
-
- Billot-Klein, D., L. Gutmann, S. Sablé, E. Guittet, and J. van Heijenoort. 1994. Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VANB-type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, and Enterococcus gallinarum. J. Bacteriol. 176:2398-2405. - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials