Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct 14;97(8):781-8.
doi: 10.1161/01.RES.0000186193.22438.6c. Epub 2005 Sep 15.

Myoendothelial coupling is not prominent in arterioles within the mouse cremaster microcirculation in vivo

Affiliations
Free article

Myoendothelial coupling is not prominent in arterioles within the mouse cremaster microcirculation in vivo

Daniel Siegl et al. Circ Res. .
Free article

Abstract

A smooth muscle hyperpolarization is essential for endothelium-dependent hyperpolarizing factor-mediated dilations. It is debated whether the hyperpolarization is induced by a factor (endothelium-derived hyperpolarizing factor) and/or is attributable to direct current transfer from the endothelium via myoendothelial gap junctions. Here, we measured membrane potential in endothelial cells (EC) and smooth muscle cells (SMC) in vivo at rest and during acetylcholine (ACh) application in the cremaster microcirculation of mice using sharp microelectrodes before and after application of specific blockers of Ca2+-dependent K+ channels (K(Ca)). Moreover, diameter changes in response to ACh were studied. Membrane potential at rest was lower in EC than SMC (-46.6+/-1.0 versus -36.5+/-1.0mV, P<0.05). Bolus application of ACh induced robust hyperpolarizations in EC and SMC, but the amplitude (11.1+/-0.9 versus 5.1+/-0.9mV, P<0.05) and duration of the response (10.7+/-0.8 versus 7.5+/-1.0s, P<0.05) were larger in EC. Blockers of large conductance K(Ca) (charybdotoxin or iberiotoxin) abrogated ACh-induced hyperpolarizations in SMC but did not alter endothelial hyperpolarizations. In contrast, apamin, a blocker of small conductance K(Ca) abolished ACh-induced hyperpolarizations in EC and had only small effects on SMC. ACh-induced dilations were strongly attenuated by iberiotoxin but only slightly by apamin. We conclude that myoendothelial coupling in arterioles in vivo in the murine cremaster is weak, as EC and SMC behaved electrically different. Small conductance K(Ca) mediate endothelial hyperpolarization in response to ACh, whereas large conductance K(Ca) are important in SMC. Because tight myoendothelial coupling was found in vitro in previous studies, we suggest that it is differentially regulated between vascular beds and/or by mechanisms acting in vivo.

PubMed Disclaimer

Publication types

LinkOut - more resources