Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Jan;45(1):175-82.
doi: 10.1016/j.pep.2005.06.012. Epub 2005 Jul 26.

Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners

Affiliations
Comparative Study

Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners

Sreedevi Nallamsetty et al. Protein Expr Purif. 2006 Jan.

Abstract

It is well established that certain highly soluble proteins have the ability to enhance the solubility of their fusion partners. However, very little is known about how different solubility enhancers compare in terms of their ability to promote the proper folding of their passenger proteins. We compared the ability of two well-known solubility enhancers, Escherichia coli maltose-binding protein (MBP) and N utilization substance A (NusA), to improve the solubility and promote the proper folding of a variety of passenger proteins that are difficult to solubilize. We used an intracellular processing system to monitor the solubility of these passenger proteins after they were cleaved from MBP and NusA by tobacco etch virus protease. In addition, the biological activity of some fusion proteins was compared to serve as a more quantitative indicator of native structure. The results indicate that MBP and NusA have comparable solubility-enhancing properties. Little or no difference was observed either in the solubility of passenger proteins after intracellular processing of the MBP and NusA fusion proteins or in the biological activity of solubilized passenger proteins, suggesting that the underlying mechanism of solubility enhancement is likely to be similar for both the proteins, and that they play a passive role rather than an active one in the folding of their fusion partners.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources