Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome"
- PMID: 16172379
- PMCID: PMC1216834
- DOI: 10.1073/pnas.0506758102
Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome"
Erratum in
- Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16530
Abstract
The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for approximately 80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.
Figures




Similar articles
-
Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae.Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12391-6. doi: 10.1073/pnas.182380799. Epub 2002 Aug 28. Proc Natl Acad Sci U S A. 2002. PMID: 12200547 Free PMC article.
-
Comparative genomic analysis and identification of pathogenicity islands of hypervirulent ST-17 Streptococcus agalactiae Brazilian strain.Infect Genet Evol. 2020 Jun;80:104195. doi: 10.1016/j.meegid.2020.104195. Epub 2020 Jan 15. Infect Genet Evol. 2020. PMID: 31954181
-
Genomic characterisation of perinatal Western Australian Streptococcus agalactiae isolates.PLoS One. 2019 Oct 2;14(10):e0223256. doi: 10.1371/journal.pone.0223256. eCollection 2019. PLoS One. 2019. PMID: 31577825 Free PMC article.
-
Capsular Typing Method for Streptococcus agalactiae Using Whole-Genome Sequence Data.J Clin Microbiol. 2016 May;54(5):1388-90. doi: 10.1128/JCM.03142-15. Epub 2016 Mar 9. J Clin Microbiol. 2016. PMID: 26962081 Free PMC article.
-
Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease.Mol Microbiol. 2002 Sep;45(6):1499-513. doi: 10.1046/j.1365-2958.2002.03126.x. Mol Microbiol. 2002. PMID: 12354221
Cited by
-
Sporulation is dispensable for the vegetable-associated life cycle of the human pathogen Bacillus cereus.Microb Biotechnol. 2021 Jul;14(4):1550-1565. doi: 10.1111/1751-7915.13816. Epub 2021 May 6. Microb Biotechnol. 2021. PMID: 33955675 Free PMC article.
-
Comparative Genomic Analysis of Agarolytic Flavobacterium faecale WV33T.Int J Mol Sci. 2022 Sep 17;23(18):10884. doi: 10.3390/ijms231810884. Int J Mol Sci. 2022. PMID: 36142798 Free PMC article.
-
Evolutionary Mechanisms of Long-Term Genome Diversification Associated With Niche Partitioning in Marine Picocyanobacteria.Front Microbiol. 2020 Sep 15;11:567431. doi: 10.3389/fmicb.2020.567431. eCollection 2020. Front Microbiol. 2020. PMID: 33042072 Free PMC article.
-
Analysis of Streptococcus agalactiae pan-genome for prevalence, diversity and functionality of integrative and conjugative or mobilizable elements integrated in the tRNA(Lys CTT) gene.Mol Genet Genomics. 2015 Oct;290(5):1727-40. doi: 10.1007/s00438-015-1031-9. Epub 2015 Apr 2. Mol Genet Genomics. 2015. PMID: 25832353
-
Bacterial intra-species gene loss occurs in a largely clocklike manner mostly within a pool of less conserved and constrained genes.Sci Rep. 2016 Oct 13;6:35168. doi: 10.1038/srep35168. Sci Rep. 2016. PMID: 27734920 Free PMC article.
References
-
- Wayne, L., Brenner, D., Colwell, R., Grimont, P., Kandler, O., Krichevsky, L., Moore, L., Moore, W., Murray, R., Stackebrandt, E., et al. (1987) Int. J. Syst. Bacteriol. 37, 463–464.
-
- Schuchat, A. & Wenger, J. D. (1994) Epidemiol. Rev. 16, 374–402. - PubMed
-
- Tyrrell, G. J., Senzilet, L. D., Spika, J. S., Kertesz, D. A., Alagaratnam, M., Lovgren, M. & Talbot, J. A. (2000) J. Infect. Dis. 182, 168–173. - PubMed
-
- Harrison, L. H., Elliott, J. A., Dwyer, D. M., Libonati, J. P., Ferrieri, P., Billmann, L. & Schuchat, A. (1998) J. Infect. Dis. 177, 998–1002. - PubMed
-
- Lin, F. Y., Clemens, J. D., Azimi, P. H., Regan, J. A., Weisman, L. E., Philips, J. B., III, Rhoads, G. G., Clark, P., Brenner, R. A. & Ferrieri, P. (1998) J. Infect. Dis. 177, 790–792. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases