Identification of slow correlated motions in proteins using residual dipolar and hydrogen-bond scalar couplings
- PMID: 16172390
- PMCID: PMC1236556
- DOI: 10.1073/pnas.0505129102
Identification of slow correlated motions in proteins using residual dipolar and hydrogen-bond scalar couplings
Abstract
Despite their importance for biological activity, slower molecular motions beyond the nanosecond range remain poorly understood. We have assembled an unprecedented set of experimental NMR data, comprising up to 27 residual dipolar couplings per amino acid, to define the nature and amplitude of backbone motion in protein G using the Gaussian axial fluctuation model in three dimensions. Slower motions occur in the loops, and in the beta-sheet, and are absent in other regions of the molecule, including the alpha-helix. In the beta-sheet an alternating pattern of dynamics along the peptide sequence is found to form a long-range network of slow motion in the form of a standing wave extending across the beta-sheet, resulting in maximal conformational sampling at the interaction site. The alternating nodes along the sequence match the alternation of strongly hydrophobic side chains buried in the protein core. Confirmation of the motion is provided through extensive cross-validation and by independent hydrogen-bond scalar coupling analysis that shows this motion to be correlated. These observations strongly suggest that dynamical information can be transmitted across hydrogen bonds and have important implications for understanding collective motions and long-range information transfer in proteins.
Figures







Similar articles
-
Amplitudes of protein backbone dynamics and correlated motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear relaxation measurements.Biochemistry. 2004 Aug 24;43(33):10678-91. doi: 10.1021/bi049357w. Biochemistry. 2004. PMID: 15311929
-
Characterization of protein dynamics from residual dipolar couplings using the three dimensional Gaussian axial fluctuation model.Proteins. 2008 Apr;71(1):353-63. doi: 10.1002/prot.21703. Proteins. 2008. PMID: 17957769
-
Temperature-dependent dynamical transitions of different classes of amino acid residue in a globular protein.J Am Chem Soc. 2012 Dec 5;134(48):19576-9. doi: 10.1021/ja3097898. Epub 2012 Nov 20. J Am Chem Soc. 2012. PMID: 23140218
-
Characterization of enzyme motions by solution NMR relaxation dispersion.Acc Chem Res. 2008 Feb;41(2):214-21. doi: 10.1021/ar700132n. Epub 2008 Feb 19. Acc Chem Res. 2008. PMID: 18281945 Review.
-
Nuclear magnetic resonance provides a quantitative description of protein conformational flexibility on physiologically important time scales.Biochemistry. 2011 Apr 12;50(14):2735-47. doi: 10.1021/bi200177v. Epub 2011 Mar 21. Biochemistry. 2011. PMID: 21388216 Review.
Cited by
-
NMR provides evidence for dynamic hydrogen bonding in proteins.Protein Sci. 2007 Jul;16(7):1247-8. doi: 10.1110/ps.072945407. Epub 2007 Jun 13. Protein Sci. 2007. PMID: 17567735 Free PMC article. No abstract available.
-
Solvent-dependent segmental dynamics in intrinsically disordered proteins.Sci Adv. 2019 Jun 28;5(6):eaax2348. doi: 10.1126/sciadv.aax2348. eCollection 2019 Jun. Sci Adv. 2019. PMID: 31259246 Free PMC article.
-
Structural dependencies of protein backbone 2JNC' couplings.Protein Sci. 2008 Apr;17(4):768-76. doi: 10.1110/ps.073331608. Epub 2008 Feb 27. Protein Sci. 2008. PMID: 18305196 Free PMC article.
-
Advances in the REDCAT software package.BMC Bioinformatics. 2013 Oct 7;14:302. doi: 10.1186/1471-2105-14-302. BMC Bioinformatics. 2013. PMID: 24098943 Free PMC article.
-
Cross-correlated relaxation rates between protein backbone H-X dipolar interactions.J Biomol NMR. 2017 Mar;67(3):211-232. doi: 10.1007/s10858-017-0098-5. Epub 2017 Mar 12. J Biomol NMR. 2017. PMID: 28286915
References
-
- Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. (1991) Science 254, 1598–1603. - PubMed
-
- Karplus, M. & Kuriyan, J. (2005) Proc. Natl. Acad. Sci. USA 9, 646–652.
-
- Eisenmesser, E. Z., Bosco, D. A., Akke, M. & Kern, D. (2002) Science 295, 1520–1523. - PubMed
-
- Benkovic, S. J. & Hammes-Schiffer, S. (2003) Science 301, 1196–1202. - PubMed
-
- Baker, D. & Sali, A. (2001) Science 294, 93–96. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources