Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Oct;34(10):846-57.
doi: 10.1039/b407049f. Epub 2005 Aug 23.

Variable temperature infrared spectroscopy: a convenient tool for studying the thermodynamics of weak solid-gas interactions

Affiliations
Review

Variable temperature infrared spectroscopy: a convenient tool for studying the thermodynamics of weak solid-gas interactions

Edoardo Garrone et al. Chem Soc Rev. 2005 Oct.

Abstract

This tutorial review describes the use of variable temperature infrared spectroscopy of adsorbed species (VTIR), a recent method for studying the thermodynamics of weak solid-gas interactions. Examples show how a fundamental relationship of thermodynamics (the van't Hoff equation, used long since in several fields of physical chemistry) can describe equilibrium processes at the solid-gas interface. The VTIR method is fully exploited by measuring absorbance of an IR band, temperature and pressure over a wide temperature range: an estimation of the interaction energy is, however, possible even ignoring the equilibrium pressure. Precise thermodynamic characterization of solid-gas interactions is required in several fields: on the applied side, gas sensing, separation and storage, which involve such areas as work-place security, air pollution control and the energy sector; regarding fundamental knowledge, weak solid-gas interactions are relevant to a number of fields, including hydrogen bonding, coordination chemistry and surface phenomena in a broad sense. Infrared (IR) spectroscopy of (gas) molecules adsorbed on a solid is frequently used to characterize both, the adsorbed species and the adsorbing centres at the solid surface. The potential of the technique can be greatly enhanced by obtaining IR spectra over a temperature range, and simultaneously measuring IR absorbance, temperature and equilibrium pressure. When this is done, variable temperature infrared (VTIR) spectroscopy can be used not only for a more detailed surface characterization, but also for precise studies on the thermodynamics of solid-gas interactions. Furthermore, when weak interactions are concerned, the technique shows favourable features compared to adsorption calorimetry, or to other classical methods. The potential of the VTIR method is highlighted by reviewing recently reported studies on dihydrogen, dinitrogen and carbon monoxide adsorption on zeolites. To facilitate understanding, an outline of the basis of the method is also given, together with an appraisal of the critical points involved in its practical use.

PubMed Disclaimer

LinkOut - more resources