Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Nov;58(5):706-19.
doi: 10.1002/ana.20627.

Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats

Affiliations
Comparative Study

Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats

Thomas Liebscher et al. Ann Neurol. 2005 Nov.

Abstract

Spinal cord trauma leads to loss of motor, sensory and autonomic functions below the lesion. Recovery is very restricted, due in part to neurite growth inhibitory myelin proteins, in particular Nogo-A. Two neutralizing antibodies against Nogo-A were used to study recovery and axonal regeneration after spinal cord lesions. Three months old Lewis rats were tested in sensory-motor tasks (open field locomotion, crossing of ladder rungs and narrow beams, the CatWalk(R) runway, reactions to heat and von Frey hairs). A T-shaped lesion was made at T8, and an intrathecal catheter delivered highly purified anti-Nogo-A monoclonal IgGs or unspecific IgGs for 2 weeks. A better outcome in motor behavior was obtained as early as two weeks after lesion in the animals receiving the Nogo-A antibodies. Withdrawal responses to heat and mechanical stimuli were not different between the groups. Histology showed enhanced regeneration of corticospinal axons in the anti-Nogo-A antibody groups. fMRI revealed significant cortical responses to stimulation of the hindpaw exclusively in anti-Nogo-A animals. These results demonstrate that neutralization of the neurite growth inhibitor Nogo-A by intrathecal antibodies leads to enhanced regeneration and reorganization of the injured CNS, resulting in improved recovery of compromised functions in the absence of dysfunctions.

PubMed Disclaimer

Publication types

MeSH terms