Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Sep 21:6:132.
doi: 10.1186/1471-2164-6-132.

Molecular signature of clinical severity in recovering patients with severe acute respiratory syndrome coronavirus (SARS-CoV)

Affiliations

Molecular signature of clinical severity in recovering patients with severe acute respiratory syndrome coronavirus (SARS-CoV)

Yun-Shien Lee et al. BMC Genomics. .

Abstract

Background: Severe acute respiratory syndrome (SARS), a recent epidemic human disease, is caused by a novel coronavirus (SARS-CoV). First reported in Asia, SARS quickly spread worldwide through international travelling. As of July 2003, the World Health Organization reported a total of 8,437 people afflicted with SARS with a 9.6% mortality rate. Although immunopathological damages may account for the severity of respiratory distress, little is known about how the genome-wide gene expression of the host changes under the attack of SARS-CoV.

Results: Based on changes in gene expression of peripheral blood, we identified 52 signature genes that accurately discriminated acute SARS patients from non-SARS controls. While a general suppression of gene expression predominated in SARS-infected blood, several genes including those involved in innate immunity, such as defensins and eosinophil-derived neurotoxin, were upregulated. Instead of employing clustering methods, we ranked the severity of recovering SARS patients by generalized associate plots (GAP) according to the expression profiles of 52 signature genes. Through this method, we discovered a smooth transition pattern of severity from normal controls to acute SARS patients. The rank of SARS severity was significantly correlated with the recovery period (in days) and with the clinical pulmonary infection score.

Conclusion: The use of the GAP approach has proved useful in analyzing the complexity and continuity of biological systems. The severity rank derived from the global expression profile of significantly regulated genes in patients may be useful for further elucidating the pathophysiology of their disease.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Significant differences in gene expression profiles in patients with SARS or bacterial infection. Using a probe set with 6,525 annotated genes, global gene expression was analyzed by (A) variation distribution in peripheral blood specimens from patients with acute SARS (AS), recovering SARS (RS), bacterial infections (IN), and normal controls (NC). (B) In the hierarchical clustering of relative change in gene expression using a probe set of 885 filtered genes (gene vector >0.5 SD), red indicates upregulation and green indicates downregulation in gene expression relative to a common reference that was the pooled amplified RNA from 11 normal controls. (C) Using the 885-gene set, singular value decomposition (SVD) analysis by two eigenvectors showed three distinguished clusters of AS (red ●), IN (green ▲), and NC (blue ▮) groups, with the RS (red ○) specimens scattering among AS and IN.
Figure 2
Figure 2
The top 40 discriminating genes with the highest distinction values for AS or NC groups. Twenty genes that were specifically (A) upregulated or (B) downregulated in patients with SARS. Another twenty genes that were non-specifically (C) upregulated or (D) downregulated by both bacterial infection and SARS. Each column represents an individual sample and each row represents a gene. The color range reflected relative change according to the scale shown. NC, normal control; IN, bacterial infection; AS, acute SARS. GMRCL clone numbers of some ESTs are also included in the parentheses.
Figure 3
Figure 3
Generalized associated plots (GAP) analysis of SARS patients samples. (A) Pair-wise Euclidean distance matrix that was sorted by a GAP using 52 genes with the highest discriminating power for AS groups revealed the minimum anti-Robinson events in the matrix, resulting in a smooth transition order of the AS and RS specimens from severely diseased to healthy states. AS (red ●); RS (red ○); NC (blue ▮). (B) Gene expression profile for the 52 discriminating genes displayed in the order obtained from the GAP method.
Figure 4
Figure 4
Correlations between the GAP-derived rank for SARS severity and clinical parameters. (A) The scatter plot of all SARS specimens with the order obtained from the GAP method and the days after the onset of disease showed a significant correlation (P < 5 × 10-7). (B) Sixteen out of 17 SARS patients who submitted multiple blood specimens showed a similar trend of changes in the GAP-derived severity rank along with the recovery from the disease. Patients with 2 (n = 15) and 3 specimens (n = 2) were labeled with blue and green lines, respectively. (C) The scatter plot of all AS and RS specimens with the order obtained from the GAP method and clinical pulmonary infection score (CPIS) showed a significant correlation (P < 0.001).

Similar articles

Cited by

References

    1. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus AD, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300:1394–1399. doi: 10.1126/science.1085952. - DOI - PubMed
    1. Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A, Coughlin SM, Freeman D, Girn N, Griffith OL, Leach SR, Mayo M, McDonald H, Montgomery SB, Pandoh PK, Petrescu AS, Robertson AG, Schein JE, Siddiqui A, Smailus DE, Stott JM, Yang GS, Plummer F, Andonov A, Artsob H, Bastien N, Bernard K, Booth TF, Bowness D, Czub M, Drebot M, Fernando L, Flick R, Garbutt M, Gray M, Grolla A, Jones S, Feldmann H, Meyers A, Kabani A, Li Y, Normand S, Stroher U, Tipples GA, Tyler S, Vogrig R, Ward D, Watson B, Brunham RC, Krajden M, Petric M, Skowronski DM, Upton C, Roper RL. The Genome sequence of the SARS-associated coronavirus. Science. 2003;300:1399–1404. doi: 10.1126/science.1085953. - DOI - PubMed
    1. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK, Yan WW, Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK, Yuen KY. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361:1319–1325. doi: 10.1016/S0140-6736(03)13077-2. - DOI - PMC - PubMed
    1. Ruan YJ, Wei CL, Ee AL, Vega VB, Thoreau H, Su ST, Chia JM, Ng P, Chiu KP, Lim L, Zhang T, Peng CK, Lin EO, Lee NM, Yee SL, Ng LF, Chee RE, Stanton LW, Long PM, Liu ET. Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection. Lancet. 2003;361:1779–1785. doi: 10.1016/S0140-6736(03)13414-9. - DOI - PMC - PubMed
    1. Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348:1967–1976. doi: 10.1056/NEJMoa030747. - DOI - PubMed

Publication types

MeSH terms

Substances