Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul;51(7):559-68.
doi: 10.1139/w05-033.

A mannanase, ManA, of the polycentric anaerobic fungus Orpinomyces sp. strain PC-2 has carbohydrate binding and docking modules

Affiliations

A mannanase, ManA, of the polycentric anaerobic fungus Orpinomyces sp. strain PC-2 has carbohydrate binding and docking modules

Eduardo A Ximenes et al. Can J Microbiol. 2005 Jul.

Abstract

The anaerobic fungus Orpinomyces sp. strain PC-2 produces a broad spectrum of glycoside hydrolases, most of which are components of a high molecular mass cellulosomal complex. Here we report about a cDNA (manA) having 1924 bp isolated from the fungus and found to encode a polypeptide of 579 amino acid residues. Analysis of the deduced sequence revealed that it had a mannanase catalytic module, a family 1 carbohydrate-binding module, and a noncatalytic docking module. The catalytic module was homologous to aerobic fungal mannanases belonging to family 5 glycoside hydrolases, but unrelated to the previously isolated mannanases (family 26) of the anaerobic fungus Piromyces. No mannanase activity could be detected in Escherichia coli harboring a manA-containing plasmid. The manA was expressed in Saccharomyces cerevisiae and ManA was secreted into the culture medium in multiple forms. The purified extracellular heterologous mannanase hydrolyzed several types of mannan but lacked activity against cellulose, chitin, or beta-glucan. The enzyme had high specific activity toward locust bean mannan and an extremely broad pH profile. It was stable for several hours at 50 degrees C, but was rapidly inactivated at 60 degrees C. The carbohydrate-binding module of the Man A produced separately in E. coli bound preferably to insoluble lignocellulosic substrates, suggesting that it might play an important role in the complex enzyme system of the fungus for lignocellulose degradation.

Le champignon anaérobie Orpinomyces sp. souche PC-2 produit un large spectre d’hydrolases glycosidiques, la plupart faisant partie d’un complexe cellulosomal de masse moléculaire élevée. Nous faisons ici la description d’un ADNc (manA) de 1924 pb isolé du champignon et codant un polypeptide de 579 acides aminés. L’analyse de la séquence déduite a révélé qu’il renfermait un module catalytique de mannanase, un module de liaison aux glucides de la famille 1 et un module d’arrimage non catalytique. Le module catalytique était homologue à des mannanases de champignons aérobies appartenant aux hydrolases glycosidiques que la famille 5 mais n’était pas apparenté à des mannanases isolées précédemment (famille 26) du champignon anaérobie Piromyces. Aucune activité mannanases n’a pu être détectée chez Escherichia coli renfermant un plasmide contenant manA. Le manA fut exprimé chez Saccharomyces cerevisiae et ManA fut secrete dans le milieu culture sous des formes multiples. La mannanase hétérologue extracellulaire purifiée a hydrolysé plusieurs types de mannane mais n’a démontré aucune activité envers le cellulose, la chitine ou le β-glucane. L’enzyme a démontré une activité spécifique élevée envers le mannane de caroube et un profil de pH extrêmement large. Elle etait stable pendant plusieurs heures à 50 °C mais fut rapidement inactivée à 60 °C. Le module de liaison aux glucides de la mannanase A produite séparément chez E. coli s’est lié de préférence à des substrats lignocellulosiques insolubles, indiquant qu’il pourrait jouer un rôle important dans la dégradation du lignocellulose par le système enzymatique complexe du champignon.

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.
Illustration of module organizations of some mannanases from various microbial sources. O-ManA, Orpinomyces mannanase A; OS-ManA, Orpinomyces mannanase A expressed in S. cerevisiae with NCDM truncated; M-CBM, Orpinomyces mannanase A CBM expressed in E. coli; TrMan1, T. reesei mannanase 1 (Stålbrand et al. 1995); AaMan1, Aspergillus aculeatus mannanase 1 (Christgau et al. 1994); AbCEL4, Agaricus bisporus CEL4 (Tang et al. 2001; Yagüe et al. 1997); P-Mans, mannanases of the anaerobic fungus Piromyces equi (Fannuti et al. 1995; Millward-Sadler et al. 1996).
Fig. 2.
Fig. 2.
Amino acid sequence alignment of the catalytic domains of fungal mannanases belonging to family 5 glycoside hydrolases of Orpinomyces PC-2 (O-ManA), T. reesei (TrMan1; Stålbrand et al. 1995), Aspergillus aculeatus (AaMan1; Christgau et al. 1994), and Agaricus bisporus (AbCEL4; Yagüe et al. 1997).
Fig. 3.
Fig. 3.
Alignment of the Orpinomyces mannanase CBM (O-ManA) with those from T. reesei mannanase (T-Man1; Stålbrand et al. 1995), cellobiohydrolase I (T-CbhI; Shoemaker et al. 1983), cellobiohydrolase II (T-CbhII; Teeri et al. 1987), endoglucanase I (T-EngI; Penttilä et al. 1986), endoglucanase II (T-EngII; Saloheimo et al. 1988), and endoglucanase V (T-EngV; Saloheimo et al. 1994). Identical amino acids are in bold.
Fig. 4.
Fig. 4.
Mannanase production by S. cerevisiae transformed with pManA after galactose induction. An aliquot of an overnight culture grown in DOB medium was used to inoculate raffinose – YPD medium. After growth to an OD600 of 1.0, sterile galactose was added. Samples were withdrawn at time points shown in the figure. Levels of OD600 (open symbols) and extracellular mannanase activity (filled symbols) are shown for the transformants containing pManA and pYES2.
Fig. 5.
Fig. 5.
SDS–PAGE analysis of the Orpinomyces ManA produced in S. cerevisiae and ManA CBM produced in E. coli. Gel was stained with Coomassie Brilliant Blue R-250 and destained before photographs were taken. Lane M, low molecular weight standards (Bio-Rad); Lane 1 of Panel A, 40-μg proteins of yeast culture supernatant; Lane 2 of Panel A, 10 μg ManA purified from yeast culture supernatant; Lane 1 of Panel B; 15 μg ManA CBM purified from E. coli cell lysate.
Fig. 6.
Fig. 6.
Effect of pH on the activity of ManA assayed at 50 °C. For details see “Materials and methods” section.

Similar articles

Cited by

References

    1. Ali BRS, Zhou LQ, Graves FM, Freedman RB, Black GW, Gilbert HJ, and Hazlewood GP 1995. Cellulases and hemi-cellulases of the anaerobic fungus Piromyces constitute a multiprotein cellulose-binding complex and are encoded by multigene families. FEMS Microbiol. Lett 125: 15–22. - PubMed
    1. Bayer EA, Shimon LJ, Shoham Y, and Lamed R 1998. Cellulosomes-structure and ultrastructure. J. Struct. Biol 124: 221–234. - PubMed
    1. Biely P, and Tenkanen M 1998. Enzymology of hemicellulose degradation In Trichoderma and Gliocladium. Vol. 2 Edited by Harman GE and Kubicek CP. Taylor and Francis, London: pp. 25–47.
    1. Blum DL, Li X-L, Chen H, and Ljungdahl LG 1999. Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl. Environ. Microbiol 65: 3990–3995. - PMC - PubMed
    1. Borneman WS, Akin DE, and Ljungdahl LG 1989. Fermentation products and plant cell wall-degrading enzymes produced by monocentric and polycentric anaerobic fungi. Appl. Environ. Microbiol 55: 1066–1073. - PMC - PubMed

Publication types

Associated data