Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct 15;82(2):264-72.
doi: 10.1002/jnr.20630.

Subchronic haloperidol increases CB(1) receptor binding and G protein coupling in discrete regions of the basal ganglia

Affiliations

Subchronic haloperidol increases CB(1) receptor binding and G protein coupling in discrete regions of the basal ganglia

Mikael Andersson et al. J Neurosci Res. .

Abstract

The present study was designed to test whether chronic neuroleptic treatment, which is known to alter both expression and density of dopamine D(2) receptors in striatal regions, has effects upon function and binding level of the cannabinoid CB(1) receptor in the basal ganglia by using receptor autoradiography. As predicted, subchronic haloperidol treatment resulted in increased binding of (3)H-raclopride and quinpirole-induced guanosine 5'-O-(gamma-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) in the striatum when compared to that measured in control animals. This increased D(2) receptor binding and function after 3 days washout was normalized after a 2-week washout period. Effect of haloperidol treatment was studied for CB(1) receptor binding and CP55,940-stimulated [(35)S]GTPgammaS in the striatum, globus pallidus, and substantia nigra. (3)[H]CP55,940 binding levels were found in rank order from highest to lowest in substantia nigra > globus pallidus > striatum. Furthermore, subchronic haloperidol treatment resulted in elevated binding levels of (3)[H]CP55,940 in the striatum and the substantia nigra and CB(1) receptor-stimulated [(35)S]GTPgammaS bindings in the substantia nigra after 3 days washout. These increased binding levels were normalized at 1-4 weeks after termination of haloperidol treatment. Haloperidol treatment had no significant effect on CB(1) receptor or [(35)S]GTPgammaS binding levels in globus pallidus. The results help to elucidate the underlying biochemical mechanism of CB(1) receptor supersensitivity after haloperidol treatment.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources