Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2005 Aug;103(2):347-55.
doi: 10.3171/jns.2005.103.2.0347.

Preoperative and postoperative mapping of cerebrovascular reactivity in moyamoya disease by using blood oxygen level-dependent magnetic resonance imaging

Affiliations
Case Reports

Preoperative and postoperative mapping of cerebrovascular reactivity in moyamoya disease by using blood oxygen level-dependent magnetic resonance imaging

David J Mikulis et al. J Neurosurg. 2005 Aug.

Abstract

Object: The ability to map cerebrovascular reactivity (CVR) at the tissue level in patients with moyamoya disease could have considerable impact on patient management, especially in guiding surgical intervention and assessing the effectiveness of surgical revascularization. This paper introduces a new noninvasive magnetic resonance (MR) imaging-based method to map CVR. Preoperative and postoperative results are reported in three cases to demonstrate the efficacy of this technique in assessing vascular reserve at the microvascular level.

Methods: Three patients with angiographically confirmed moyamoya disease were evaluated before and after surgical revascularization. Measurements of CVR were obtained by rapidly manipulating end-tidal PCO2 between hypercapnic and hypocapnic states during MR imaging. The CVR maps were then calculated by comparing the percentage of changes in MR signal with changes in end-tidal PCO2. Presurgical CVR maps showed distinct regions of positive and negative reactivity that correlated precisely with the vascular territories supplied by severely narrowed vessels. Postsurgical reactivity maps demonstrated improvement in the two patients with positive clinical outcome and no change in the patient in whom a failed superficial temporal artery-middle cerebral artery bypass was performed.

Conclusions: Magnetic imaging-based CVR mapping during rapid manipulation of end-tidal PCO2 is an exciting new method for determining the location and extent of abnormal vascular reactivity secondary to proximal large-vessel stenoses in moyamoya disease. Although the study group is small, there seems to be considerable potential for guiding preoperative decisions and monitoring efficacy of surgical revascularization.

PubMed Disclaimer

Publication types

LinkOut - more resources