Microfluidic sonicator for real-time disruption of eukaryotic cells and bacterial spores for DNA analysis
- PMID: 16176793
- DOI: 10.1016/j.ultrasmedbio.2005.05.005
Microfluidic sonicator for real-time disruption of eukaryotic cells and bacterial spores for DNA analysis
Abstract
Biologic agent screening is a three-step process: lysis of host cell membranes or walls to release their DNA, polymerase chain reaction to amplify the genetic material and screening for distinguishing genetic signatures. Macrofluidic devices commonly use sonication as a lysis method. Here, we present a piezoelectric microfluidic minisonicator and test its performance. Eukaryotic human leukemia HL-60 cells and Bacillus subtilis bacterial spores were lysed as they passed through a microfluidic channel at 50 microL/min and 5 microL/min, respectively, in the absence of any chemical denaturants, enzymes or microparticles. We used fluorescence-activated cell sorting and hematocytometry to measure 80% lysis of HL-60 cells after 3 s of sonication. Real-time polymerase chain reaction indicated 50% lysis of B. subtilis spores with 30 s of sonication. Advantages of the minisonicator over macrofluidic implementations include a small sample volume (2.5 microL), reduced energy consumption and compatibility with other microfluidic blocks. These features make this device an attractive option for "lab-on-a-chip" and portable applications.
Similar articles
-
A minisonicator to rapidly disrupt bacterial spores for DNA analysis.Anal Chem. 1999 Oct 1;71(19):4232-6. doi: 10.1021/ac990347o. Anal Chem. 1999. PMID: 10517145
-
Semi-automated bacterial spore detection system with micro-fluidic chips for aerosol collection, spore treatment and ICAN DNA detection.Biosens Bioelectron. 2009 Jul 15;24(11):3299-305. doi: 10.1016/j.bios.2009.04.025. Epub 2009 Apr 24. Biosens Bioelectron. 2009. PMID: 19450964
-
An ultra-high temperature flow-through capillary device for bacterial spore lysis.Electrophoresis. 2010 Aug;31(16):2804-12. doi: 10.1002/elps.201000176. Electrophoresis. 2010. PMID: 20737447
-
Microfluidic impedance-based flow cytometry.Cytometry A. 2010 Jul;77(7):648-66. doi: 10.1002/cyto.a.20910. Cytometry A. 2010. PMID: 20583276 Review.
-
PCR microfluidic devices for DNA amplification.Biotechnol Adv. 2006 May-Jun;24(3):243-84. doi: 10.1016/j.biotechadv.2005.10.002. Epub 2005 Dec 2. Biotechnol Adv. 2006. PMID: 16326063 Review.
Cited by
-
Acoustic micro-vortexing of fluids, particles and cells in disposable microfluidic chips.Biomed Microdevices. 2016 Aug;18(4):71. doi: 10.1007/s10544-016-0097-4. Biomed Microdevices. 2016. PMID: 27444649 Free PMC article.
-
BioMEMS -Advancing the Frontiers of Medicine.Sensors (Basel). 2008 Sep 26;8(9):6077-6107. doi: 10.3390/s8096077. Sensors (Basel). 2008. PMID: 27873858 Free PMC article. Review.
-
Cell Lysis Based on an Oscillating Microbubble Array.Micromachines (Basel). 2020 Mar 10;11(3):288. doi: 10.3390/mi11030288. Micromachines (Basel). 2020. PMID: 32164279 Free PMC article.
-
Combined treatment of PC-3 cells with ultrasound and microbubbles suppresses invasion and migration.Oncol Lett. 2014 Sep;8(3):1372-1376. doi: 10.3892/ol.2014.2310. Epub 2014 Jul 3. Oncol Lett. 2014. PMID: 25120726 Free PMC article.
-
Advances in microfluidic PCR for point-of-care infectious disease diagnostics.Biotechnol Adv. 2011 Nov-Dec;29(6):830-9. doi: 10.1016/j.biotechadv.2011.06.017. Epub 2011 Jun 30. Biotechnol Adv. 2011. PMID: 21741465 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous