Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug:1053:237-46.
doi: 10.1196/annals.1344.021.

Saposin C: neuronal effect and CNS delivery by liposomes

Affiliations

Saposin C: neuronal effect and CNS delivery by liposomes

Zhengtao Chu et al. Ann N Y Acad Sci. 2005 Aug.

Abstract

Saposin C is one of four small lipid-binding proteins that derive from a single precursor protein, named prosaposin (PSAP). PSAP has several neuronal effects, including neurite outgrowth stimulation, neuron preservation, and nerve regeneration enhancement. A minimal domain required for PSAP's neurotrophic function is located in the amino-terminal half of saposin C. Genetic defects of the PSAP gene in humans and mice lead to a complex lysosomal storage disease. The skin fibroblasts from PSAP- and saposin C-deficient patients have a massive accumulation of multivesicular bodies (MVBs). Incorporation of exogenous saposin C-containing liposomes into the cultured PSAP-/- cells reduced the accumulated MVBs to normal levels. Internalized saposin C was localized to late endosomes and lysosomes. MVBs are crucial for maintaining the cellular homeostasis required for neuronal development and growth. PSAP-/- mice have a short life span (30 days) and central nervous system (CNS) neuronal degeneration. Similar to PSAP-/- fibroblasts, excessive MVBs accumulated in CNS neurons and brain tissues of PSAP-null mice. Cultured cortical and hippocampal neurons from PSAP-/- mice had poor survival and displayed a neurite degenerative pattern. Delivery of saposin C ex vivo into cultured neurons and in vivo into brain neuronal cells in mice across the blood-brain barrier was accomplished with intravenously administered dioleoylphosphatidylserine (DOPS) liposomes. These studies may yield a new therapeutic approach for neuron protection, preservation, and regeneration.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources