Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005;12(20):2373-92.
doi: 10.2174/0929867054864778.

Poly(ADP-ribose)polymerase inhibition - where now?

Affiliations
Review

Poly(ADP-ribose)polymerase inhibition - where now?

Esther C Y Woon et al. Curr Med Chem. 2005.

Abstract

The poly(ADP-ribose)polymerases (PARPs) catalyse the transfer of ADP-ribose units from the substrate NAD(+) to acceptor proteins, biosynthesising polyanionic poly(ADP-ribose) polymers. A major isoform, PARP-1, has been the target for design of inhibitors for over twenty-five years. Inhibitors of the activity of PARP-1 have been claimed to have applications in the treatment of many disease states, including cancer, haemorrhagic shock, cardiac infarct, stroke, diabetes, inflammation and retroviral infection, but only recently have PARP-1 inhibitors entered clinical trial. Most PARP-1 inhibitors mimic the nicotinamide of NAD(+) and the structure-activity relationships are understood in terms of the structure of the catalytic site. However, five questions remain if PARP-1 inhibitors are to realise their potential in treating human diseases. Firstly, the consensus pharmacophore is a benzamide with N-H conformationally constrained anti to the carbonyl-arene bond but this is also a "pharmacophore" for insolubility in water; can water-solubility be designed into inhibitors without loss of potency? Secondly, some potential clinical applications require tissue-selective PARP-1 inhibition; is this possible through pro-drug approaches? Thirdly, different diseases may require therapeutic PARP-1 inhibition to be either short-term or chronic; are there potential problems associated with chronic inhibition of this DNA-repair process? Fourthly, PARP-1 is one of at least eighteen isoforms; is isoform-selectivity essential, desirable or even possible? Fifthly, PARP activity can be inhibited in cells by inhibition of poly(ADP-ribose)-glycohydrolase (PARG); will this be a viable strategy for future drug design? The answers to these questions will determine the future of disease therapy through inhibition of PARP.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources