Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct 3;521(1-3):1-8.
doi: 10.1016/j.ejphar.2005.07.013. Epub 2005 Sep 23.

Suppressive effect of novel aromatic diamine compound on nuclear factor-kappaB-dependent expression of inducible nitric oxide synthase in macrophages

Affiliations

Suppressive effect of novel aromatic diamine compound on nuclear factor-kappaB-dependent expression of inducible nitric oxide synthase in macrophages

Hyun-Mo Shin et al. Eur J Pharmacol. .

Abstract

N1-benzyl-4-methylbenzene-1,2-diamine (BMD) is a novel synthetic compound. In the present study, BMD compound was discovered to inhibit nitric oxide (NO) production in macrophages RAW 264.7. BMD compound attenuated lipopolysaccharide (LPS)-induced synthesis of both mRNA and protein of inducible nitric oxide synthase (iNOS), and inhibited LPS-induced iNOS promoter activity, indicating that the aromatic diamine compound could down-regulate iNOS expression at the transcription level. As a mechanism of the anti-inflammatory action, suppression of BMD compound on nuclear factor (NF)-kappaB activation has been documented. BMD compound exhibited dose-dependent inhibitory effect on LPS-mediated NF-kappaB transcriptional activity in the macrophages. Further, the compound inhibited LPS-mediated nuclear translocation of NF-kappaB p65 and DNA binding activity of NF-kappaB complex, in parallel, but did not affect LPS-mediated degradation of inhibitory kappaBalpha protein (IkappaBalpha). These results indicate that BMD compound could inhibit nuclear localization step of NF-kappaB p65 without affecting IkappaBalpha degradation. Finally, BMD compound could provide an invaluable tool to investigate NF-kappaB-dependent iNOS expression, in addition to its therapeutic potential in NO-associated inflammatory diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources