A three-dimensional model of the human immunodeficiency virus type 1 integration complex
- PMID: 16184433
- DOI: 10.1007/s10822-005-5256-2
A three-dimensional model of the human immunodeficiency virus type 1 integration complex
Abstract
While the general features of HIV-1 integrase function are understood, there is still uncertainty about the composition of the integration complex and how integrase interacts with viral and host DNA. We propose an improved model of the integration complex based on current experimental evidence including a comparison with the homologous Tn5 transposase containing bound DNA and an analysis of DNA binding sites using Goodford's GRID. Our model comprises a pair of integrase dimers, two strands of DNA to represent the viral DNA ends and a strand of bent DNA representing the host chromosome. In our model, the terminal four base pairs of each of the viral DNA strands interact with the integrase dimer providing the active site, while bases one turn away interact with a flexible loop (residues 186-194) on the second integrase dimer. We propose that residues E152, Q148 and K156 are involved in the specific recognition of the conserved CA dinucleotide and that the active site mobile loop (residues 140-149) stabilises the integration complex by acting as a barrier to separate the two viral DNA ends. In addition, the residues responsible for DNA binding in our model show a high level of amino acid conservation.
Similar articles
-
Molecular dynamics studies of the full-length integrase-DNA complex.Biochem Biophys Res Commun. 2005 Nov 4;336(4):1010-6. doi: 10.1016/j.bbrc.2005.08.211. Biochem Biophys Res Commun. 2005. PMID: 16165087
-
Photo-cross-linking studies suggest a model for the architecture of an active human immunodeficiency virus type 1 integrase-DNA complex.Biochemistry. 1998 May 12;37(19):6667-78. doi: 10.1021/bi972949c. Biochemistry. 1998. PMID: 9578550
-
Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction.EMBO J. 1998 Oct 1;17(19):5832-43. doi: 10.1093/emboj/17.19.5832. EMBO J. 1998. PMID: 9755183 Free PMC article.
-
Characterization and structural analysis of HIV-1 integrase conservation.AIDS Rev. 2009 Jan-Mar;11(1):17-29. AIDS Rev. 2009. PMID: 19290031 Review.
-
Retroviral DNA Integration.Chem Rev. 2016 Oct 26;116(20):12730-12757. doi: 10.1021/acs.chemrev.6b00125. Epub 2016 May 20. Chem Rev. 2016. PMID: 27198982 Free PMC article. Review.
Cited by
-
The structure of the bacterial oxidoreductase enzyme DsbA in complex with a peptide reveals a basis for substrate specificity in the catalytic cycle of DsbA enzymes.J Biol Chem. 2009 Jun 26;284(26):17835-45. doi: 10.1074/jbc.M109.011502. Epub 2009 Apr 22. J Biol Chem. 2009. PMID: 19389711 Free PMC article.
-
Structural basis for HIV-1 DNA integration in the human genome, role of the LEDGF/P75 cofactor.EMBO J. 2009 Apr 8;28(7):980-91. doi: 10.1038/emboj.2009.41. Epub 2009 Feb 19. EMBO J. 2009. PMID: 19229293 Free PMC article.
-
Structural dynamics of native and V260E mutant C-terminal domain of HIV-1 integrase.J Comput Aided Mol Des. 2015 Apr;29(4):371-85. doi: 10.1007/s10822-015-9830-y. Epub 2015 Jan 14. J Comput Aided Mol Des. 2015. PMID: 25586721
-
Organism-adapted specificity of the allosteric regulation of pyruvate kinase in lactic acid bacteria.PLoS Comput Biol. 2013;9(7):e1003159. doi: 10.1371/journal.pcbi.1003159. Epub 2013 Jul 25. PLoS Comput Biol. 2013. PMID: 23946717 Free PMC article.
-
An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF.PLoS One. 2009;4(1):e4081. doi: 10.1371/journal.pone.0004081. Epub 2009 Jan 1. PLoS One. 2009. PMID: 19119323 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources