Shape transitions of fluid vesicles and red blood cells in capillary flows
- PMID: 16186506
- PMCID: PMC1242298
- DOI: 10.1073/pnas.0504243102
Shape transitions of fluid vesicles and red blood cells in capillary flows
Abstract
The dynamics of fluid vesicles and red blood cells (RBCs) in cylindrical capillary flow is studied by using a three-dimensional mesoscopic simulation approach. As flow velocity increases, a model RBC is found to transit from a nonaxisymmetric discocyteto an axisymmetric parachute shape (coaxial with the flow axis), while a fluid vesicle is found to transit from a discocyte to a prolate ellipsoid. Both shape transitions reduce the flow resistance. The critical velocities of the shape transitions are linearly dependent on the bending rigidity and on the shear modulus of the membrane. Slipper-like shapes of the RBC model are observed around the transition velocities. Our results are in good agreement with experiments on RBCs.
Figures






Similar articles
-
Why do red blood cells have asymmetric shapes even in a symmetric flow?Phys Rev Lett. 2009 Oct 30;103(18):188101. doi: 10.1103/PhysRevLett.103.188101. Epub 2009 Oct 26. Phys Rev Lett. 2009. PMID: 19905834
-
SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.Biomed Eng Online. 2016 Dec 28;15(Suppl 2):161. doi: 10.1186/s12938-016-0256-0. Biomed Eng Online. 2016. PMID: 28155717 Free PMC article.
-
The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.Microvasc Res. 1998 Jan;55(1):77-91. doi: 10.1006/mvre.1997.2052. Microvasc Res. 1998. PMID: 9473411
-
Red blood cell mechanics and capillary blood rheology.Cell Biophys. 1991 Jun;18(3):231-51. doi: 10.1007/BF02989816. Cell Biophys. 1991. PMID: 1726534 Review.
-
[Macro- and micro-rheology of blood circulation].Iyodenshi To Seitai Kogaku. 1983 Aug;21(4):225-32. Iyodenshi To Seitai Kogaku. 1983. PMID: 6366292 Review. Japanese. No abstract available.
Cited by
-
A phenomenological particle-based platelet model for simulating filopodia formation during early activation.Int J Numer Method Biomed Eng. 2015 Mar;31(3):e02702. doi: 10.1002/cnm.2702. Int J Numer Method Biomed Eng. 2015. PMID: 25532469 Free PMC article.
-
Red blood cell thickness is evolutionarily constrained by slow, hemoglobin-restricted diffusion in cytoplasm.Sci Rep. 2016 Oct 25;6:36018. doi: 10.1038/srep36018. Sci Rep. 2016. PMID: 27777410 Free PMC article.
-
Trypanosome motion represents an adaptation to the crowded environment of the vertebrate bloodstream.PLoS Pathog. 2012;8(11):e1003023. doi: 10.1371/journal.ppat.1003023. Epub 2012 Nov 15. PLoS Pathog. 2012. PMID: 23166495 Free PMC article.
-
Two-dimensional fluctuating vesicles in linear shear flow.Eur Phys J E Soft Matter. 2008 Mar;25(3):309-21. doi: 10.1140/epje/i2007-10299-7. Epub 2008 Apr 9. Eur Phys J E Soft Matter. 2008. PMID: 18398568
-
Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling.Sci Rep. 2017 Feb 24;7:43134. doi: 10.1038/srep43134. Sci Rep. 2017. PMID: 28233788 Free PMC article.
References
-
- Skalak, R. (1969) Science 164, 717-719. - PubMed
-
- Suzuki, Y., Tateishi, N., Soutani, M. & Maeda, N. (1996) Microcirculation 3, 49-57. - PubMed
-
- Tsukada, K., Sekizuka, E., Oshio, C. & Minamitani, H. (2001) Microvasc. Res. 61, 231-239. - PubMed
-
- Skalak, R. (1990) Biorheology 27, 277-293. - PubMed
-
- Secomb, T. W., Skalak, R., Özkaya, N. & Gross, J. F. (1986) J. Fluid Mech. 163, 405-423.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials