Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jun 25;267(18):12600-5.

Reversible stepwise mechanism involving a carbanion intermediate in the elimination of ammonia from L-histidine catalyzed by histidine ammonia-lyase

Affiliations
  • PMID: 1618765
Free article

Reversible stepwise mechanism involving a carbanion intermediate in the elimination of ammonia from L-histidine catalyzed by histidine ammonia-lyase

T Furuta et al. J Biol Chem. .
Free article

Abstract

L-Histidine labeled with deuterium at the C-5' position of the imidazole ring, L-[5'-2H]histidine (His-5'-D), was used as a probe for investigating a stepwise reversible mechanism via a carbanion intermediate in the elimination of ammonia catalyzed by histidine ammonia-lyase (EC 4.3.1.3). The labeled L-histidine (His-5'-D) (2.45 mM) was incubated with histidine ammonia-lyase (200 units) from Pseudomonas fluorescens at pH 7.0 or 9.0 at 25.0 degrees C for 24 h. The time course of the reaction was examined to determine the rates of enzyme-catalyzed hydrogen exchange at C-5' of L-histidine and urocanic acid. The finding of the enzyme-catalyzed hydrogen exchange at C-5' of both L-histidine and urocanic acid in the presence of L-histidine provided a rational explanation for a stepwise reversible mechanism via a carbanion intermediate in the elimination reaction. The rate of increase in the concentration of urocanic acid exchanged with hydrogen (UA-5'-H) did not depend on the formation rate of urocanic acid and UA-5'-H was continuously formed at a constant rate (25.6 microM/h) even after the completion of urocanic acid formation. These observations suggested the presence of the reversible reaction of urocanic acid and a carbanion intermediate. Since there was only a minor contribution for the formation of UA-5'-H from L-histidine exchanged with solvent hydrogen (His-5'-H), the main pathway in the enzymatic reaction of His-5'-D must be the formation of UA-5'-D via a carbanion intermediate (carbanion-D). Regeneration of the carbanion-D from UA-5'-D by its reverse reaction and subsequent hydrogen incorporation at C-5' would contribute to a large extent for the formation of UA-5'-H. The stability of carbanion was also demonstrated to be approximately three times higher at pH 7.0 than at pH 9.0.

PubMed Disclaimer

Publication types

LinkOut - more resources