Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jul 5;267(19):13335-9.

Kinetics of colchicine binding to purified beta-tubulin isotypes from bovine brain

Affiliations
  • PMID: 1618835
Free article

Kinetics of colchicine binding to purified beta-tubulin isotypes from bovine brain

A Banerjee et al. J Biol Chem. .
Free article

Abstract

Tubulin, the constituent protein of microtubules, is an alpha beta heterodimer; both alpha and beta exist in several isotypic forms whose functional significance is not precisely known. The antimitotic alkaloid colchicine binds to mammalian brain tubulin in a biphasic manner under pseudo-first-order conditions in the presence of a large excess of colchicine (Garland, D. L. (1978) Biochemistry 17, 4266-4272). We have studied the kinetics of colchicine binding to purified beta-tubulin isotypes and find that each of the purified beta-tubulin isotypes binds colchicine in a monophasic manner. The apparent on-rate constants for the binding of colchicine to alpha beta II-, alpha beta III-, and alpha beta IV-tubulin dimers are respectively 132 +/- 5, 30 +/- 2, and 236 +/- 7 M-1 s-1. When the isotypes are mixed, the kinetics become biphasic. Scatchard analysis revealed that the isotypes differ significantly in their affinity constants (Ka) for binding colchicine. The affinity constants are 0.24 x 10(6), 0.12 x 10(6), and 3.31 x 10(6) M-1, respectively, for alpha beta II-, alpha beta III-, and alpha beta IV-tubulin dimers. Our results are in agreement with the hypothesis that the beta-subunit of tubulin plays a major role in the interaction of colchicine with tubulin. Our binding data raise the possibility that the tubulin isotypes might play important regulatory roles by interacting differently with other non-tubulin proteins in vivo, which in turn, may regulate microtubule-based functions in living cells.

PubMed Disclaimer

Publication types

LinkOut - more resources