Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct 6;48(20):6178-93.
doi: 10.1021/jm049034y.

Acyl ureas as human liver glycogen phosphorylase inhibitors for the treatment of type 2 diabetes

Affiliations

Acyl ureas as human liver glycogen phosphorylase inhibitors for the treatment of type 2 diabetes

Thomas Klabunde et al. J Med Chem. .

Abstract

Using a focused screening approach, acyl ureas have been discovered as a new class of inhibitors of human liver glycogen phosphorylase (hlGPa). The X-ray structure of screening hit 1 (IC50 = 2 microM) in a complex with rabbit muscle glycogen phosphorylase b reveals that 1 binds at the AMP site, the main allosteric effector site of the dimeric enzyme. A first cycle of chemical optimization supported by X-ray structural data yielded derivative 21, which inhibited hlGPa with an IC50 of 23 +/- 1 nM, but showed only moderate cellular activity in isolated rat hepatocytes (IC50 = 6.2 microM). Further optimization was guided by (i) a 3D pharmacophore model that was derived from a training set of 24 compounds and revealed the key chemical features for the biological activity and (ii) the 1.9 angstroms crystal structure of 21 in complex with hlGPa. A second set of compounds was synthesized and led to 42 with improved cellular activity (hlGPa IC50 = 53 +/- 1 nM; hepatocyte IC50 = 380 nM). Administration of 42 to anaesthetized Wistar rats caused a significant reduction of the glucagon-induced hyperglycemic peak. These findings are consistent with the inhibition of hepatic glycogenolysis and support the use of acyl ureas for the treatment of type 2 diabetes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources