Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 May;33(5):635-46.

Solubility of calcium salts of unconjugated and conjugated natural bile acids

Affiliations
  • PMID: 1619359
Free article

Solubility of calcium salts of unconjugated and conjugated natural bile acids

J J Gu et al. J Lipid Res. 1992 May.
Free article

Abstract

The approximate solubility products of the calcium salts of ten unconjugated bile acids and several taurine conjugated bile acids were determined. The formation of micelles, gels, and/or precipitates in relation to Ca2+,Na+, and bile salt concentration was summarized by "phase maps." Because the ratio of Ca2+ to bile salt in the precipitates was ca. 1:2, and the activity of Ca2+ but not that of bile salt (BA-) could be measured, the ion product of aCa2+ [BA-]2 was calculated. The ion product (= Ksp) ranged over nine orders of magnitude and the solubility thus ranged over three orders of magnitude; its value depended on the number and orientation of the hydroxyl groups in the bile acid. Ion products (in units of 10(-9) mol/l)3 were as follows: cholic (3 alpha OH,7 alpha OH,12 alpha OH) 640; ursocholic (3 alpha OH,7 beta OH,12 alpha OH) 2300; hyocholic (3 alpha OH,6 alpha OH,7 alpha OH) 11; ursodeoxycholic (3 alpha OH,7 beta OH) 91; chenodeoxycholic (3 alpha OH,7 alpha OH) 10; deoxycholic (3 alpha OH,12 alpha OH) 1.5; 12-epideoxycholic (lagodeoxycholic, 3 alpha OH,12 beta OH) 2.2; hyodeoxycholic (3 alpha OH,6 alpha OH) 0.7; and lithocholic (3 alpha OH) 0.00005. The critical micellization temperature of the sodium salt of murideoxycholic acid (3 alpha OH,6 beta OH) was greater than 100 degrees C, and its Ca2+ salt was likely to be very insoluble. Taurine conjugates were much more soluble than their corresponding unconjugated derivatives: chenodeoxycholyltaurine, 384; deoxycholyltaurine, 117; and cholyltaurine, greater than 10,000. Calcium salts of unconjugated bile acids precipitated rapidly in contrast to those of glycine conjugates which were metastable for months. Thus, hepatic conjugation of bile acids with taurine or glycine not only enhances solubility at acidic pH, but also at Ca2+ ion concentrations present in bile and intestinal content.

PubMed Disclaimer

Publication types

LinkOut - more resources