Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov;39(5):804-12.
doi: 10.1016/j.yjmcc.2005.08.005. Epub 2005 Sep 29.

Spatiotemporal characteristics of SR Ca(2+) uptake and release in detubulated rat ventricular myocytes

Affiliations

Spatiotemporal characteristics of SR Ca(2+) uptake and release in detubulated rat ventricular myocytes

Fabien Brette et al. J Mol Cell Cardiol. 2005 Nov.

Abstract

In cardiac ventricular myocytes, sarcoplasmic reticulum (SR) Ca(2+) load is a key determinant of SR Ca(2+) release. This release normally occurs predominantly from SR junctions at sarcolemmal invaginations (t-tubules), ensuring synchronous SR Ca(2+) release throughout the cell. However under conditions of Ca(2+) overload, spontaneous SR Ca(2+) release and propagating Ca(2+) waves can occur, which are pro-arrhythmic. We used detubulated rat ventricular myocytes to determine the dependence of Ca(2+) wave propagation on SR Ca(2+) load, and the role of t-tubules in SR Ca(2+) uptake and spontaneous release. After SR Ca(2+) depletion, recovery of Ca(2+) transient amplitude (and SR Ca(2+) load) was slower in detubulated than control myocytes (half-maximal recovery: 9.9+/-1.4 vs. 5.5+/-0.7 beats). In detubulated myocytes the extent and velocity of Ca(2+) propagation from the cell periphery increased with each beat and depended steeply on SR Ca(2+) load. Isoproterenol (ISO) accelerated recovery, increased maximal propagation velocity and reduced the threshold SR Ca(2+) load for propagation. Ca(2+) spark frequency was uniform across control cell width and was similar at the periphery of detubulated cells. However, internal Ca(2+) spark frequency in detubulated cells was 75% lower (despite comparable local SR Ca(2+) load); this transverse spark frequency profile was similar to that in atrial myocytes. We conclude that: (1) t-tubule Ca(2+) fluxes normally control SR Ca(2+) refilling; (2) Ca(2+) wave propagation depends steeply on SR Ca(2+) content (3) SR-t-tubule junctions are important in initiating SR Ca(2+) release and (4) ISO enhances propagation of SR Ca release, but not the initiation of SR Ca release events (for given SR Ca(2+) loads).

PubMed Disclaimer

Publication types

LinkOut - more resources