Orthostatic hypotension and paroxysmal hypertension in humans with high spinal cord injury
- PMID: 16198704
- DOI: 10.1016/S0079-6123(05)52015-6
Orthostatic hypotension and paroxysmal hypertension in humans with high spinal cord injury
Abstract
The spinal cord is essential for normal autonomic nervous system regulation of the cardiovascular system as the preganglionic neurons controlling the heart and blood vessels originate in the thoracolumbar spinal segments. The site and extent of a spinal cord injury determine the degree of autonomic involvement in cardiovascular dysfunction after the injury. After complete cervical cord lesions the entire sympathetic outflow is separated from cerebral control; this may cause orthostatic hypotension. Commonly after traumatic injuries to the spinal cord, one or more segments are totally destroyed. However, the distal portion of the spinal cord often retains function and activation of spinal cord reflexes working independently of the brain can result in paroxysmal hypertension. This chapter will focus on orthostatic hypotension and paroxysmal hypertension in cord-injured people with lesions affecting the cervical and upper thoracic spinal cord. Conditions promoting these abnormalities in blood pressure will be elaborated. Possible mechanisms for the hypo- and hypertension will be discussed, as will strategies for managing these problems.
Similar articles
-
The clinical problems in cardiovascular control following spinal cord injury: an overview.Prog Brain Res. 2006;152:223-9. doi: 10.1016/S0079-6123(05)52014-4. Prog Brain Res. 2006. PMID: 16198703 Review.
-
Autonomic dysreflexia after spinal cord injury: central mechanisms and strategies for prevention.Prog Brain Res. 2006;152:245-63. doi: 10.1016/S0079-6123(05)52016-8. Prog Brain Res. 2006. PMID: 16198705 Review.
-
Olfactory ensheathing cells reduce duration of autonomic dysreflexia in rats with high spinal cord injury.Auton Neurosci. 2010 Apr 19;154(1-2):20-9. doi: 10.1016/j.autneu.2009.10.001. Epub 2009 Nov 6. Auton Neurosci. 2010. PMID: 19896908
-
Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology.Spinal Cord. 2006 Jun;44(6):341-51. doi: 10.1038/sj.sc.3101855. Epub 2005 Nov 22. Spinal Cord. 2006. PMID: 16304564 Review.
-
Autonomic dysreflexia and primary afferent sprouting after clip-compression injury of the rat spinal cord.J Neurotrauma. 2001 Oct;18(10):1107-19. doi: 10.1089/08977150152693782. J Neurotrauma. 2001. PMID: 11686496
Cited by
-
Diurnal blood pressure and urine production in acute spinal cord injury compared with controls.Spinal Cord. 2017 Jan;55(1):39-46. doi: 10.1038/sc.2016.100. Epub 2016 Jun 28. Spinal Cord. 2017. PMID: 27349605
-
The Brain Dead Patient Is Still Sentient: A Further Reply to Patrick Lee and Germain Grisez.J Med Philos. 2016 Jun;41(3):315-28. doi: 10.1093/jmp/jhw008. Epub 2016 Apr 17. J Med Philos. 2016. PMID: 27089894 Free PMC article.
-
Vascular dysfunctions following spinal cord injury.J Med Life. 2010 Jul-Sep;3(3):275-85. J Med Life. 2010. PMID: 20945818 Free PMC article. Review.
-
Grafting Embryonic Raphe Neurons Reestablishes Serotonergic Regulation of Sympathetic Activity to Improve Cardiovascular Function after Spinal Cord Injury.J Neurosci. 2020 Feb 5;40(6):1248-1264. doi: 10.1523/JNEUROSCI.1654-19.2019. Epub 2020 Jan 2. J Neurosci. 2020. PMID: 31896670 Free PMC article.
-
Partial restoration of cardiovascular function by embryonic neural stem cell grafts after complete spinal cord transection.J Neurosci. 2013 Oct 23;33(43):17138-49. doi: 10.1523/JNEUROSCI.2851-13.2013. J Neurosci. 2013. PMID: 24155317 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical