Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct;38(5):347-66.
doi: 10.1016/j.jbi.2005.02.005. Epub 2005 Mar 17.

Predicting dire outcomes of patients with community acquired pneumonia

Affiliations
Free article

Predicting dire outcomes of patients with community acquired pneumonia

Gregory F Cooper et al. J Biomed Inform. 2005 Oct.
Free article

Abstract

Community-acquired pneumonia (CAP) is an important clinical condition with regard to patient mortality, patient morbidity, and healthcare resource utilization. The assessment of the likely clinical course of a CAP patient can significantly influence decision making about whether to treat the patient as an inpatient or as an outpatient. That decision can in turn influence resource utilization, as well as patient well being. Predicting dire outcomes, such as mortality or severe clinical complications, is a particularly important component in assessing the clinical course of patients. We used a training set of 1601 CAP patient cases to construct 11 statistical and machine-learning models that predict dire outcomes. We evaluated the resulting models on 686 additional CAP-patient cases. The primary goal was not to compare these learning algorithms as a study end point; rather, it was to develop the best model possible to predict dire outcomes. A special version of an artificial neural network (NN) model predicted dire outcomes the best. Using the 686 test cases, we estimated the expected healthcare quality and cost impact of applying the NN model in practice. The particular, quantitative results of this analysis are based on a number of assumptions that we make explicit; they will require further study and validation. Nonetheless, the general implication of the analysis seems robust, namely, that even small improvements in predictive performance for prevalent and costly diseases, such as CAP, are likely to result in significant improvements in the quality and efficiency of healthcare delivery. Therefore, seeking models with the highest possible level of predictive performance is important. Consequently, seeking ever better machine-learning and statistical modeling methods is of great practical significance.

PubMed Disclaimer

Publication types

LinkOut - more resources