A control study to evaluate a computer-based microarray experiment design recommendation system for gene-regulation pathways discovery
- PMID: 16203178
- DOI: 10.1016/j.jbi.2005.05.011
A control study to evaluate a computer-based microarray experiment design recommendation system for gene-regulation pathways discovery
Abstract
The main topic of this paper is evaluating a system that uses the expected value of experimentation for discovering causal pathways in gene expression data. By experimentation we mean both interventions (e.g., a gene knock-out experiment) and observations (e.g., passively observing the expression level of a "wild-type" gene). We introduce a system called GEEVE (causal discovery in Gene Expression data using Expected Value of Experimentation), which implements expected value of experimentation in discovering causal pathways using gene expression data. GEEVE provides the following assistance, which is intended to help biologists in their quest to discover gene-regulation pathways: Recommending which experiments to perform (with a focus on "knock-out" experiments) using an expected value of experimentation (EVE) method. Recommending the number of measurements (observational and experimental) to include in the experimental design, again using an EVE method. Providing a Bayesian analysis that combines prior knowledge with the results of recent microarray experimental results to derive posterior probabilities of gene regulation relationships. In recommending which experiments to perform (and how many times to repeat them) the EVE approach considers the biologist's preferences for which genes to focus the discovery process. Also, since exact EVE calculations are exponential in time, GEEVE incorporates approximation methods. GEEVE is able to combine data from knock-out experiments with data from wild-type experiments to suggest additional experiments to perform and then to analyze the results of those microarray experimental results. It models the possibility that unmeasured (latent) variables may be responsible for some of the statistical associations among the expression levels of the genes under study. To evaluate the GEEVE system, we used a gene expression simulator to generate data from specified models of gene regulation. Using the simulator, we evaluated the GEEVE system using a randomized control study that involved 10 biologists, some of whom used GEEVE and some of whom did not. The results show that biologists who used GEEVE reached correct causal assessments about gene regulation more often than did those biologists who did not use GEEVE. The GEEVE users also reached their assessments in a more cost-effective manner.
Similar articles
-
An evaluation of a system that recommends microarray experiments to perform to discover gene-regulation pathways.Artif Intell Med. 2004 Jun;31(2):169-82. doi: 10.1016/j.artmed.2004.01.018. Artif Intell Med. 2004. PMID: 15219293
-
Prediction of regulatory pathways using mRNA expression and protein interaction data: application to identification of galactose regulatory pathway.Biosystems. 2006 Feb-Mar;83(2-3):125-35. doi: 10.1016/j.biosystems.2005.06.013. Epub 2005 Dec 27. Biosystems. 2006. PMID: 16384635
-
A computer-based microarray experiment design-system for gene-regulation pathway discovery.AMIA Annu Symp Proc. 2003;2003:733-7. AMIA Annu Symp Proc. 2003. PMID: 14728270 Free PMC article.
-
Genes arrayed out for you: the amazing world of microarrays.Med Sci Monit. 2005 Feb;11(2):RA52-62. Med Sci Monit. 2005. PMID: 15668645 Review.
-
Global genomic approaches to the iron-regulated proteome.Ann Clin Lab Sci. 2005 Summer;35(3):230-9. Ann Clin Lab Sci. 2005. PMID: 16081578 Review.
Cited by
-
Causal discovery and inference: concepts and recent methodological advances.Appl Inform (Berl). 2016;3:3. doi: 10.1186/s40535-016-0018-x. Epub 2016 Feb 18. Appl Inform (Berl). 2016. PMID: 27195202 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources