Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec 2;280(48):40130-4.
doi: 10.1074/jbc.M506160200. Epub 2005 Oct 3.

Real-time monitoring of conformational dynamics of the epsilon subunit in F1-ATPase

Affiliations
Free article

Real-time monitoring of conformational dynamics of the epsilon subunit in F1-ATPase

Ryota Iino et al. J Biol Chem. .
Free article

Abstract

It has been proposed that C-terminal two alpha-helices of the epsilon subunit of F1-ATPase can undergo conformational transition between retracted folded-hairpin form and extended form. Here, using F(1) from thermophilic Bacillus PS3, we monitored this transition in real time by fluorescence resonance energy transfer (FRET) between a donor dye and an acceptor dye attached to N terminus of the gamma subunit and C terminus of the epsilon subunit, respectively. High FRET (extended form) of F1 turned to low FRET (retracted form) by ATP, which then reverted as ATP was hydrolyzed to ADP. 5'-Adenyl-beta,gamma-imidodiphosphate, ADP + AlF4-, ADP + NaN3, and GTP also caused the retracted form, indicating that ATP binding to the catalytic beta subunits induces the transition. The ATP-induced transition from high FRET to low FRET occurred in a similar time scale to the ATP-induced activation of ATPase from inhibition by the epsilon subunit, although detailed kinetics were not the same. The transition became faster as temperature increased, but the extrapolated rate at 65 degrees C (physiological temperature of Bacillus PS3) was still too slow to assign the transition as an obligate step in the catalytic turnover. Furthermore, binding affinity of ATP to the isolated epsilon subunit was weakened as temperature increased, and the dissociation constant extrapolated to 65 degrees C reached to 0.67 mm, a consistent value to assume that the epsilon subunit acts as a sensor of ATP concentration in the cell.

PubMed Disclaimer

MeSH terms

LinkOut - more resources