On the sample size requirement in genetic association tests when the proportion of false positives is controlled
- PMID: 16204206
- PMCID: PMC1456193
- DOI: 10.1534/genetics.105.049536
On the sample size requirement in genetic association tests when the proportion of false positives is controlled
Abstract
With respect to the multiple-tests problem, recently an increasing amount of attention has been paid to control the false discovery rate (FDR), the positive false discovery rate (pFDR), and the proportion of false positives (PFP). The new approaches are generally believed to be more powerful than the classical Bonferroni one. This article focuses on the PFP approach. It demonstrates via examples in genetic association studies that the Bonferroni procedure can be more powerful than the PFP-control one and also shows the intrinsic connection between controlling the PFP and controlling the overall type I error rate. Since controlling the PFP does not necessarily lead to a desired power level, this article addresses the design issue and recommends the sample sizes that can attain the desired power levels when the PFP is controlled. The results in this article also provide rough guidance for the sample sizes to achieve the desired power levels when the FDR and especially the pFDR are controlled.
Similar articles
-
Quick calculation for sample size while controlling false discovery rate with application to microarray analysis.Bioinformatics. 2007 Mar 15;23(6):739-46. doi: 10.1093/bioinformatics/btl664. Epub 2007 Jan 19. Bioinformatics. 2007. PMID: 17237060
-
Controlling the proportion of false positives in multiple dependent tests.Genetics. 2004 Jan;166(1):611-9. doi: 10.1534/genetics.166.1.611. Genetics. 2004. PMID: 15020448 Free PMC article.
-
Quantitative trait Loci analysis using the false discovery rate.Genetics. 2005 Oct;171(2):783-90. doi: 10.1534/genetics.104.036699. Epub 2005 Jun 14. Genetics. 2005. PMID: 15956674 Free PMC article.
-
CAT scans, PET scans, and genomic scans.Genet Epidemiol. 1998;15(1):1-18. doi: 10.1002/(SICI)1098-2272(1998)15:1<1::AID-GEPI1>3.0.CO;2-B. Genet Epidemiol. 1998. PMID: 9523207 Review.
-
Methods for handling multiple testing.Adv Genet. 2008;60:293-308. doi: 10.1016/S0065-2660(07)00412-9. Adv Genet. 2008. PMID: 18358325 Review.
Cited by
-
Genetic determinants of cerebral vasospasm, delayed cerebral ischemia, and outcome after aneurysmal subarachnoid hemorrhage.J Cereb Blood Flow Metab. 2010 Apr;30(4):676-88. doi: 10.1038/jcbfm.2009.278. Epub 2010 Jan 13. J Cereb Blood Flow Metab. 2010. PMID: 20068580 Free PMC article.
-
Entropy-based joint analysis for two-stage genome-wide association studies.J Hum Genet. 2007;52(9):747-756. doi: 10.1007/s10038-007-0177-7. Epub 2007 Aug 9. J Hum Genet. 2007. PMID: 17687620
-
A generalized model to estimate the statistical power in mitochondrial disease studies involving 2×k tables.PLoS One. 2013 Sep 27;8(9):e73567. doi: 10.1371/journal.pone.0073567. eCollection 2013. PLoS One. 2013. PMID: 24086285 Free PMC article. Review.
-
Exact sample size needed to detect dependence in 2 x 2 x 2 tables.Biometrics. 2007 Dec;63(4):1245-52. doi: 10.1111/j.1541-0420.2007.00801.x. Biometrics. 2007. PMID: 18078486 Free PMC article.
-
Statistical Methods for Mapping Multiple QTL.Int J Plant Genomics. 2008;2008:286561. doi: 10.1155/2008/286561. Int J Plant Genomics. 2008. PMID: 18551187 Free PMC article.
References
-
- Benjamini, Y., and Y. Hochberg, 1995. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57: 289–300.
-
- Southey, B. R., and R. L. Fernando, 1998. Controlling the proportion of false positives among significant results in QTL detection. Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, Armidale, Australia, Vol. 26, pp. 221–224.
-
- Storey, J. D., 2002. A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B 64: 479–498.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources