Genetic variation of the bloom-forming Cyanobacterium Microcystis aeruginosa within and among lakes: implications for harmful algal blooms
- PMID: 16204530
- PMCID: PMC1265933
- DOI: 10.1128/AEM.71.10.6126-6133.2005
Genetic variation of the bloom-forming Cyanobacterium Microcystis aeruginosa within and among lakes: implications for harmful algal blooms
Abstract
To measure genetic variation within and among populations of the bloom-forming cyanobacterium Microcystis aeruginosa, we surveyed a suite of lakes in the southern peninsula of Michigan that vary in productivity (total phosphorus concentrations of approximately 10 to 100 microg liter(-1)). Survival of M. aeruginosa isolates from lakes was relatively low (i.e., mean of 7% and maximum of 30%) and positively related to lake total phosphorus concentration (P = 0.014, r2 = 0.407, n = 14). In another study (D. F. Raikow, O. Sarnelle, A. E. Wilson, and S. K. Hamilton, Limnol. Oceanogr. 49:482-487, 2004), survival rates of M. aeruginosa isolates collected from an oligotrophic lake (total phosphorus of approximately 10 mug liter(-1) and dissolved inorganic nitrogen:total phosphorus ratio of 12.75) differed among five different medium types (G test, P of <0.001), with higher survival (P = 0.003) in low-nutrient media (28 to 37% survival) than in high-nutrient media. Even with the relatively low isolate survivorship that could select against detecting the full range of genetic variation, populations of M. aeruginosa were genetically diverse within and among lakes (by analysis of molecular variance, Phi(sc) = 0.412 [Phi(sc) is an F-statistic derivative which evaluates the correlation of haplotypic diversity within populations relative to the haplotypic diversity among all sampled populations], P = 0.001), with most clones being distantly related to clones collected from lakes directly attached to Lake Michigan (a Laurentian Great Lake) and culture collection strains collected from Canada, Scotland, and South Africa. Ninety-one percent of the 53 genetically unique M. aeruginosa clones contained the microcystin toxin gene (mcyA). Genotypes with the toxin gene were found in all lakes, while four lakes harbored both genotypes possessing and genotypes lacking the toxin gene.
Figures



Similar articles
-
Feedback Regulation between Aquatic Microorganisms and the Bloom-Forming Cyanobacterium Microcystis aeruginosa.Appl Environ Microbiol. 2019 Oct 16;85(21):e01362-19. doi: 10.1128/AEM.01362-19. Print 2019 Nov 1. Appl Environ Microbiol. 2019. PMID: 31420344 Free PMC article.
-
Genotypic composition and the relationship between genotypic composition and geographical proximity of the cyanobacterium Microcystis aeruginosa in western Japan.Can J Microbiol. 2013 Apr;59(4):266-72. doi: 10.1139/cjm-2012-0724. Epub 2013 Feb 19. Can J Microbiol. 2013. PMID: 23586751
-
Phylogenetic inference of colony isolates comprising seasonal Microcystis blooms in Lake Taihu, China.Microb Ecol. 2011 Nov;62(4):907-18. doi: 10.1007/s00248-011-9884-x. Epub 2011 Jun 11. Microb Ecol. 2011. PMID: 21667196
-
A review on factors affecting microcystins production by algae in aquatic environments.World J Microbiol Biotechnol. 2016 Mar;32(3):51. doi: 10.1007/s11274-015-2003-2. Epub 2016 Feb 13. World J Microbiol Biotechnol. 2016. PMID: 26874538 Review.
-
Programmed Cell Death-Like and Accompanying Release of Microcystin in Freshwater Bloom-Forming Cyanobacterium Microcystis: From Identification to Ecological Relevance.Toxins (Basel). 2019 Dec 4;11(12):706. doi: 10.3390/toxins11120706. Toxins (Basel). 2019. PMID: 31817272 Free PMC article. Review.
Cited by
-
Genotype × genotype interactions between the toxic cyanobacterium Microcystis and its grazer, the waterflea Daphnia.Evol Appl. 2012 Feb;5(2):168-82. doi: 10.1111/j.1752-4571.2011.00225.x. Epub 2011 Dec 22. Evol Appl. 2012. PMID: 25568039 Free PMC article.
-
Growth rate consequences of coloniality in a harmful phytoplankter.PLoS One. 2010 Jan 13;5(1):e8679. doi: 10.1371/journal.pone.0008679. PLoS One. 2010. PMID: 20084114 Free PMC article.
-
Distribution and Habitat Specificity of Potentially-Toxic Microcystis across Climate, Land, and Water Use Gradients.Front Microbiol. 2016 Mar 15;7:271. doi: 10.3389/fmicb.2016.00271. eCollection 2016. Front Microbiol. 2016. PMID: 27014200 Free PMC article.
-
Allelopathy as an emergent, exploitable public good in the bloom-forming microalga Prymnesium parvum.Evolution. 2013 Jun;67(6):1582-90. doi: 10.1111/evo.12030. Epub 2013 Jan 11. Evolution. 2013. PMID: 23730753 Free PMC article.
-
Microcystis genotype succession and related environmental factors in Lake Taihu during cyanobacterial blooms.Microb Ecol. 2012 Nov;64(4):986-99. doi: 10.1007/s00248-012-0083-1. Epub 2012 Jul 4. Microb Ecol. 2012. PMID: 22760733
References
-
- Barker, G. L. A., A. Konopka, B. A. Handley, and P. K. Hayes. 2000. Genetic variation in Aphanizomenon (cyanobacteria) colonies from the Baltic Sea and North America. J. Phycol. 36:947-950.
-
- Bittencourt-Oliveira, M. D., M. C. de Oliveira, and C. J. S. Bolch. 2001. Genetic variability of Brazilian strains of the Microcystis aeruginosa complex (Cyanobacteria/Cyanophyceae) using the phycocyanin intergenic spacer and flanking regions (cpcBA). J. Phycol. 37:810-818.
-
- Bolch, C. J. S., S. I. Blackburn, B. A. Neilan, and P. M. Grewe. 1996. Genetic characterization of strains of cyanobacteria using pcr-rflp of the cpcBA intergenic spacer and flanking regions. J. Phycol. 32:445-451.
-
- Bolch, C. J. S., P. T. Orr, G. J. Jones, and S. I. Blackburn. 1999. Genetic, morphological, and toxicological variation among globally distributed strains of Nodularia (cyanobacteria). J. Phycol. 35:339-355.
-
- Brand, L. E. 1988. Review of genetic variation in marine phytoplankton species and the ecological implications. Biol. Oceanogr. 6:397-409.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources