Engineering Candida tenuis Xylose reductase for improved utilization of NADH: antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions
- PMID: 16204564
- PMCID: PMC1265968
- DOI: 10.1128/AEM.71.10.6390-6393.2005
Engineering Candida tenuis Xylose reductase for improved utilization of NADH: antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions
Abstract
Six single- and multiple-site variants of Candida tenuis xylose reductase that were engineered to have side chain replacements in the coenzyme 2'-phosphate binding pocket were tested for NADPH versus NADH selectivity (R(sel)) in the presence of physiological reactant concentrations. The experimental R(sel) values agreed well with predictions from a kinetic mechanism describing mixed alternative coenzyme utilization. The Lys-274-->Arg and Arg-280-->His substitutions, which individually improved wild-type R(sel) 50- and 20-fold, respectively, had opposing structural effects when they were combined in a double mutant.
Figures



Similar articles
-
The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography.Biochem J. 2005 Jan 1;385(Pt 1):75-83. doi: 10.1042/BJ20040363. Biochem J. 2005. PMID: 15320875 Free PMC article.
-
Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies.Biochem J. 2005 Jul 15;389(Pt 2):507-15. doi: 10.1042/BJ20050167. Biochem J. 2005. PMID: 15799715 Free PMC article.
-
Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.Microb Cell Fact. 2010 Mar 10;9:16. doi: 10.1186/1475-2859-9-16. Microb Cell Fact. 2010. PMID: 20219100 Free PMC article.
-
Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.Biotechnol J. 2009 May;4(5):684-94. doi: 10.1002/biot.200800334. Biotechnol J. 2009. PMID: 19452479
-
Catalytic mechanism and substrate selectivity of aldo-keto reductases: insights from structure-function studies of Candida tenuis xylose reductase.IUBMB Life. 2006 Sep;58(9):499-507. doi: 10.1080/15216540600818143. IUBMB Life. 2006. PMID: 17002977 Review.
Cited by
-
Recent advances in rational approaches for enzyme engineering.Comput Struct Biotechnol J. 2012 Oct 22;2:e201209010. doi: 10.5936/csbj.201209010. eCollection 2012. Comput Struct Biotechnol J. 2012. PMID: 24688651 Free PMC article. Review.
-
Process intensification through microbial strain evolution: mixed glucose-xylose fermentation in wheat straw hydrolyzates by three generations of recombinant Saccharomyces cerevisiae.Biotechnol Biofuels. 2014 Apr 3;7(1):49. doi: 10.1186/1754-6834-7-49. Biotechnol Biofuels. 2014. PMID: 24708666 Free PMC article.
-
Computational design of Candida boidinii xylose reductase for altered cofactor specificity.Protein Sci. 2009 Oct;18(10):2125-38. doi: 10.1002/pro.227. Protein Sci. 2009. PMID: 19693930 Free PMC article.
-
Xylose reductase from the thermophilic fungus Talaromyces emersonii: cloning and heterologous expression of the native gene (Texr) and a double mutant (TexrK271R + N273D) with altered coenzyme specificity.J Biosci. 2009 Dec;34(6):881-90. doi: 10.1007/s12038-009-0102-7. J Biosci. 2009. PMID: 20093741
-
Metabolic engineering and classical selection of the methylotrophic thermotolerant yeast Hansenula polymorpha for improvement of high-temperature xylose alcoholic fermentation.Microb Cell Fact. 2014 Aug 20;13:122. doi: 10.1186/s12934-014-0122-3. Microb Cell Fact. 2014. PMID: 25145644 Free PMC article.
References
-
- Anderlund, M., P. Radström, and B. Hahn-Hägerdal. 2001. Expression of bifunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation. Metab. Eng. 3:226-235. - PubMed
-
- Banta, S., M. Boston, A. Jarnagin, and S. Anderson. 2002. Mathematical modeling of in vitro enzymatic production of 2-keto-l-gulonic acid using NAD(H) or NADP(H) as cofactors. Metab. Eng. 4:273-284. - PubMed
-
- Bruinenberg, P. M., P. H. M. de Bot, J. P. van Dijken, and W. A. Scheffers. 1983. The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur. J. Appl. Microbiol. Biotechnol. 18:287-292.
-
- Gárdonyi, M., M. Jeppsson, G. Lidén, M. F. Gorwa-Grauslund, and B. Hahn-Hägerdal. 2003. Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 82:818-824. - PubMed
-
- Gong, C. S., N. J. Cao, J. Du, and G. T. Tsao. 1999. Ethanol production from renewable resources. Adv. Biochem. Eng. Biotechnol. 65:207-241. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources