Characterization of Mycobacterium caprae isolates from Europe by mycobacterial interspersed repetitive unit genotyping
- PMID: 16207952
- PMCID: PMC1248478
- DOI: 10.1128/JCM.43.10.4984-4992.2005
Characterization of Mycobacterium caprae isolates from Europe by mycobacterial interspersed repetitive unit genotyping
Abstract
Mycobacterium caprae, a recently defined member of the Mycobacterium tuberculosis complex, causes tuberculosis among animals and, to a limited extent, in humans in several European countries. To characterize M. caprae in comparison with other Mycobacterium tuberculosis complex members and to evaluate genotyping methods for this species, we analyzed 232 M. caprae isolates by mycobacterial interspersed repetitive unit (MIRU) genotyping and by spoligotyping. The isolates originated from 128 distinct epidemiological settings in 10 countries, spanning a period of 25 years. We found 78 different MIRU patterns (53 unique types and 25 clusters with group sizes from 2 to 9) but only 17 spoligotypes, giving Hunter-Gaston discriminatory indices of 0.941 (MIRU typing) and 0.665 (spoligotyping). For a subset of 103 M. caprae isolates derived from outbreaks or endemic foci, MIRU genotyping and IS 6110 restriction fragment length polymorphism were compared and shown to provide similar results. MIRU loci 4, 26, and 31 were most discriminant in M. caprae, followed by loci 10 and 16, a combination which is different than those reported to discriminate M. bovis best. M. caprae MIRU patterns together with published data were used for phylogenetic inference analysis employing the neighbor-joining method. M. caprae isolates were grouped together, closely related to the branches of classical M. bovis, M. pinnipedii, M. microti, and ancestral M. tuberculosis, but apart from modern M. tuberculosis. The analysis did not reflect geographic patterns indicative of origin or spread of M. caprae. Altogether, our data confirm M. caprae as a distinct phylogenetic lineage within the Mycobacterium tuberculosis complex.
Figures


Similar articles
-
Assessment of an optimized mycobacterial interspersed repetitive- unit-variable-number tandem-repeat typing system combined with spoligotyping for population-based molecular epidemiology studies of tuberculosis.J Clin Microbiol. 2007 Mar;45(3):691-7. doi: 10.1128/JCM.01393-06. Epub 2006 Dec 27. J Clin Microbiol. 2007. PMID: 17192416 Free PMC article.
-
Sensitivities and specificities of spoligotyping and mycobacterial interspersed repetitive unit-variable-number tandem repeat typing methods for studying molecular epidemiology of tuberculosis.J Clin Microbiol. 2005 Jan;43(1):89-94. doi: 10.1128/JCM.43.1.89-94.2005. J Clin Microbiol. 2005. PMID: 15634955 Free PMC article.
-
MIRU-VNTR typing adds discriminatory value to groups of Mycobacterium bovis and Mycobacterium caprae strains defined by spoligotyping.Vet Microbiol. 2010 Jul 14;143(2-4):299-306. doi: 10.1016/j.vetmic.2009.11.027. Epub 2009 Nov 27. Vet Microbiol. 2010. PMID: 20045269
-
Bacteriological diagnosis and molecular strain typing of Mycobacterium bovis and Mycobacterium caprae.Res Vet Sci. 2014 Oct;97 Suppl:S30-43. doi: 10.1016/j.rvsc.2014.04.010. Epub 2014 Apr 30. Res Vet Sci. 2014. PMID: 24833269 Review.
-
Mycobacterium caprae infection in humans.Expert Rev Anti Infect Ther. 2014 Dec;12(12):1501-13. doi: 10.1586/14787210.2014.974560. Epub 2014 Oct 27. Expert Rev Anti Infect Ther. 2014. PMID: 25345680 Review.
Cited by
-
Genomic insights into tuberculosis.Nat Rev Genet. 2014 May;15(5):307-20. doi: 10.1038/nrg3664. Epub 2014 Mar 25. Nat Rev Genet. 2014. PMID: 24662221 Review.
-
Matrixlysis, an improved sample preparation method for recovery of Mycobacteria from animal tissue material.PLoS One. 2017 Jul 19;12(7):e0181157. doi: 10.1371/journal.pone.0181157. eCollection 2017. PLoS One. 2017. PMID: 28723969 Free PMC article.
-
Effects of vaccination against paratuberculosis on tuberculosis in goats: diagnostic interferences and cross-protection.BMC Vet Res. 2012 Oct 16;8:191. doi: 10.1186/1746-6148-8-191. BMC Vet Res. 2012. PMID: 23072619 Free PMC article.
-
Occupational Exposure to Zoonotic Tuberculosis Caused by Mycobacterium caprae, Northern Greece, 2019.Emerg Infect Dis. 2021 Aug;27(7):1997-1999. doi: 10.3201/eid2707.204399. Emerg Infect Dis. 2021. PMID: 34152976 Free PMC article.
-
First Insight into Diversity of Minisatellite Loci in Mycobacterium bovis/M. caprae in Bulgaria.Diagnostics (Basel). 2023 Feb 17;13(4):771. doi: 10.3390/diagnostics13040771. Diagnostics (Basel). 2023. PMID: 36832259 Free PMC article.
References
-
- Aranaz, A., D. Cousins, A. Mateos, and L. Dominguez. 2003. Elevation of Mycobacterium tuberculosis subsp. caprae Aranaz et al. 1999 to species rank as Mycobacterium caprae comb. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 53:1785-1789. - PubMed
-
- Aranaz, A., E. Liebana, E. Gomez Mampaso, J. Galan, D. Cousins, A. Ortega, J. Blazquez, F. Baquero, A. Mateos, G. Suarez, and L. Dominguez. 1999. Mycobacterium tuberculosis subsp. caprae subsp. nov.: a taxonomic study of a new member of the Mycobacterium tuberculosis complex isolated from goats in Spain. Int. J. Syst. Bacteriol. 49:1263-1273. - PubMed
-
- Aranaz, A., E. Liebana, A. Mateos, L. Dominguez, and D. Cousins. 1998. Restriction fragment length polymorphism and spacer oligonucleotide typing: a comparative analysis of fingerprinting strategies for Mycobacterium bovis. Vet. Microbiol. 61:311-324. - PubMed
-
- Aranaz, A., E. Liebana, A. Mateos, L. Dominguez, D. Vidal, M. Domingo, O. Gonzalez, E. F. Rodriguez Ferri, A. E. Bunschoten, J. D. van Embden, and D. Cousins. 1996. Spacer oligonucleotide typing of Mycobacterium bovis strains from cattle and other animals: a tool for studying epidemiology of tuberculosis. J. Clin. Microbiol. 34:2734-2740. - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical