Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct;130(4):1054-61.
doi: 10.1016/j.jtcvs.2005.03.048.

Protein oxidation injury occurs during pediatric cardiopulmonary bypass

Affiliations
Free article

Protein oxidation injury occurs during pediatric cardiopulmonary bypass

Meredith L Sheil et al. J Thorac Cardiovasc Surg. 2005 Oct.
Free article

Abstract

Objective: Proteins are the major effectors of biological structure and function. Oxidation-induced changes to protein structure can critically impair protein function, with important pathologic consequences. This study was undertaken to examine whether oxidation-induced changes to protein structure occur during pediatric cardiopulmonary bypass and to examine the association with postoperative outcome.

Methods: Elevation of the 3,4-dihydroxyphenylalanine content of a protein relative to its native tyrosine content indicates structural damage due to oxidation. Protein 3,4-dihydroxyphenylalanine/native tyrosine ratios were measured before surgery and up to 6 hours after institution of cardiopulmonary bypass in 24 children undergoing repair of congenital heart disease, who were prospectively selected to form a cyanotic and comparable acyanotic control group. Results were correlated with perioperative variables and postoperative outcomes.

Results: Elevation of protein 3,4-dihydroxyphenylalanine/tyrosine ratios above baseline (0.48 mmol/mol [SD, 0.11 mmol/mol] vs 0.36 mmol/mol [SD, 0.13 mmol/mol]; P = .001) occurred within 30 minutes of initiating cardiopulmonary bypass in cyanotic but not in acyanotic children and correlated inversely with preoperative arterial oxygen saturation (R = -0.52; P = .03). Protein 3,4-dihydroxyphenylalanine/tyrosine ratios were also increased above baseline at 120 minutes (0.44 mmol/mol [SD, 0.12 mmol/mol]; P = .007) and 180 minutes (0.40 mmol/mol [SD, 0.14 mmol/mol]; P = .01) after the institution of cardiopulmonary bypass in children who underwent prolonged procedures. Elevation of 3,4-dihydroxyphenylalanine/tyrosine during prolonged procedures was associated with postoperative arrhythmias and the need for increased inotropic support (P = .001).

Conclusions: Oxidative injury to proteins occurs during pediatric cardiopulmonary bypass. Cyanotic children are most at risk, particularly those undergoing prolonged procedures, in whom elevation of the protein 3,4-dihydroxyphenylalanine/tyrosine ratio is associated with increased postoperative morbidity.

PubMed Disclaimer

Publication types

LinkOut - more resources