Mechanics and dynamics of actin-driven thin membrane protrusions
- PMID: 16214866
- PMCID: PMC1367038
- DOI: 10.1529/biophysj.105.071480
Mechanics and dynamics of actin-driven thin membrane protrusions
Abstract
Motile cells explore their surrounding milieu by extending thin dynamic protrusions, or filopodia. The growth of filopodia is driven by actin filament bundles that polymerize underneath the cell membrane. We compute the mechanical and dynamical features of the protrusion growth process by explicitly incorporating the flexible plasma membrane. We find that a critical number of filaments are needed to generate net filopodial growth. Without external influences, the filopodium can extend indefinitely up to the buckling length of the F-actin bundle. Dynamical calculations show that the protrusion speed is enhanced by the thermal fluctuations of the membrane; a filament bundle encased in a flexible membrane grows much faster. The protrusion speed depends directly on the number and spatial arrangement of the filaments in the bundle and whether the filaments are tethered to the membrane. Filopodia also attract each other through distortions of the membrane. Spatially close filopodia will merge to form a larger one. Force-velocity relationships mimicking micromanipulation experiments testing our predictions are computed.
Figures









Similar articles
-
The physics of filopodial protrusion.Biophys J. 2005 Aug;89(2):782-95. doi: 10.1529/biophysj.104.056515. Epub 2005 May 6. Biophys J. 2005. PMID: 15879474 Free PMC article.
-
Helical buckling of actin inside filopodia generates traction.Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):136-41. doi: 10.1073/pnas.1411761112. Epub 2014 Dec 22. Proc Natl Acad Sci U S A. 2015. PMID: 25535347 Free PMC article.
-
Dynamics of membranes driven by actin polymerization.Biophys J. 2006 Jan 15;90(2):454-69. doi: 10.1529/biophysj.105.062224. Epub 2005 Oct 20. Biophys J. 2006. PMID: 16239328 Free PMC article.
-
The making of filopodia.Curr Opin Cell Biol. 2006 Feb;18(1):18-25. doi: 10.1016/j.ceb.2005.11.002. Epub 2005 Dec 6. Curr Opin Cell Biol. 2006. PMID: 16337369 Review.
-
The role of formins in filopodia formation.Biochim Biophys Acta. 2010 Feb;1803(2):191-200. doi: 10.1016/j.bbamcr.2008.12.018. Epub 2009 Jan 3. Biochim Biophys Acta. 2010. PMID: 19171166 Review.
Cited by
-
A Biophysical Model for the Staircase Geometry of Stereocilia.PLoS One. 2015 Jul 24;10(7):e0127926. doi: 10.1371/journal.pone.0127926. eCollection 2015. PLoS One. 2015. PMID: 26207893 Free PMC article.
-
Modeling the formation of in vitro filopodia.J Math Biol. 2011 Aug;63(2):229-61. doi: 10.1007/s00285-010-0371-7. Epub 2010 Oct 19. J Math Biol. 2011. PMID: 20957371
-
Hydrodynamics of transient cell-cell contact: The role of membrane permeability and active protrusion length.PLoS Comput Biol. 2019 Apr 25;15(4):e1006352. doi: 10.1371/journal.pcbi.1006352. eCollection 2019 Apr. PLoS Comput Biol. 2019. PMID: 31022168 Free PMC article.
-
Cytoskeletal actin networks in motile cells are critically self-organized systems synchronized by mechanical interactions.Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):13978-83. doi: 10.1073/pnas.1100549108. Epub 2011 Aug 8. Proc Natl Acad Sci U S A. 2011. PMID: 21825142 Free PMC article.
-
Evolutionarily related small viral fusogens hijack distinct but modular actin nucleation pathways to drive cell-cell fusion.Proc Natl Acad Sci U S A. 2021 Jan 5;118(1):e2007526118. doi: 10.1073/pnas.2007526118. Proc Natl Acad Sci U S A. 2021. PMID: 33443166 Free PMC article.
References
-
- Pollard, T. D., L. Blanchoin, and R. D. Mullins. 2000. Molecular mechanisms controlling actin filaments dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29:545–576. - PubMed
-
- Borisy, G. G., and T. M. Svitkina. 2000. Actin machinery: pushing the envelope. Curr. Opin. Cell Biol. 12:104–112. - PubMed
-
- Small, J. V. 1988. The actin cytoskeleton. Electron Microsc. Rev. 1:155–174. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources