Improving ecological inference using individual-level data
- PMID: 16217847
- DOI: 10.1002/sim.2370
Improving ecological inference using individual-level data
Abstract
In typical small-area studies of health and environment we wish to make inference on the relationship between individual-level quantities using aggregate, or ecological, data. Such ecological inference is often subject to bias and imprecision, due to the lack of individual-level information in the data. Conversely, individual-level survey data often have insufficient power to study small-area variations in health. Such problems can be reduced by supplementing the aggregate-level data with small samples of data from individuals within the areas, which directly link exposures and outcomes. We outline a hierarchical model framework for estimating individual-level associations using a combination of aggregate and individual data. We perform a comprehensive simulation study, under a variety of realistic conditions, to determine when aggregate data are sufficient for accurate inference, and when we also require individual-level information. Finally, we illustrate the methods in a case study investigating the relationship between limiting long-term illness, ethnicity and income in London.
Copyright (c) 2005 John Wiley & Sons, Ltd.
Similar articles
-
A hybrid model for reducing ecological bias.Biostatistics. 2008 Jan;9(1):1-17. doi: 10.1093/biostatistics/kxm022. Epub 2007 Jun 16. Biostatistics. 2008. PMID: 17575322
-
Health-exposure modeling and the ecological fallacy.Biostatistics. 2006 Jul;7(3):438-55. doi: 10.1093/biostatistics/kxj017. Epub 2006 Jan 20. Biostatistics. 2006. PMID: 16428258
-
Overcoming ecologic bias using the two-phase study design.Am J Epidemiol. 2008 Apr 15;167(8):908-16. doi: 10.1093/aje/kwm386. Epub 2008 Feb 12. Am J Epidemiol. 2008. PMID: 18270370
-
Linkage failures in ecological studies.World Health Stat Q. 1995;48(2):78-84. World Health Stat Q. 1995. PMID: 8585237 Review.
-
Assessing the impact of climate variation on survival in vertebrate populations.Biol Rev Camb Philos Soc. 2008 Aug;83(3):357-99. doi: 10.1111/j.1469-185X.2008.00047.x. Biol Rev Camb Philos Soc. 2008. PMID: 18715402 Review.
Cited by
-
Unbiased temperature-related mortality estimates using weekly and monthly health data: a new method for environmental epidemiology and climate impact studies.Lancet Planet Health. 2024 Oct;8(10):e766-e777. doi: 10.1016/S2542-5196(24)00212-2. Lancet Planet Health. 2024. PMID: 39393378 Free PMC article.
-
Get real in individual participant data (IPD) meta-analysis: a review of the methodology.Res Synth Methods. 2015 Dec;6(4):293-309. doi: 10.1002/jrsm.1160. Epub 2015 Aug 19. Res Synth Methods. 2015. PMID: 26287812 Free PMC article. Review.
-
Childhood PM2.5 exposure and upward mobility in the United States.Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2401882121. doi: 10.1073/pnas.2401882121. Epub 2024 Sep 9. Proc Natl Acad Sci U S A. 2024. PMID: 39250663 Free PMC article.
-
Bayes computation for ecological inference.Stat Med. 2011 May 30;30(12):1381-96. doi: 10.1002/sim.4214. Epub 2011 Feb 22. Stat Med. 2011. PMID: 21341304 Free PMC article.
-
Estimating Causal Effects of Long-Term PM2.5 Exposure on Mortality in New Jersey.Environ Health Perspect. 2016 Aug;124(8):1182-8. doi: 10.1289/ehp.1409671. Epub 2016 Apr 15. Environ Health Perspect. 2016. PMID: 27082965 Free PMC article.