Statistical properties and inference of the antimicrobial MIC test
- PMID: 16217851
- DOI: 10.1002/sim.2207
Statistical properties and inference of the antimicrobial MIC test
Abstract
A common method for measuring the drug-specific minimum inhibitory concentration (MIC) of an antibacterial agent is via a two-fold broth dilution test known as the MIC test. Because this procedure implicitly rounds data upward, inference based on unadjusted measurements is biased and overestimates bacterial resistance to a drug. We detail this test procedure and its associated bias, which, in many cases, has an expected value of approximately 0.5 on the log(2) scale. In addition, new bias-corrected estimates of resistance are proposed. A numeric example is used to illustrate the extent to which the traditional resistance estimate can overestimate the true proportion of resistant strains, a phenomenon which is remedied by using the proposed estimates.
Similar articles
-
Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values.Clin Microbiol Infect. 2006 May;12(5):418-25. doi: 10.1111/j.1469-0691.2006.01377.x. Clin Microbiol Infect. 2006. PMID: 16643517
-
Parallel analysis of antimicrobial activities in microbial community by SSCP based on CE.Electrophoresis. 2007 Jul;28(14):2416-23. doi: 10.1002/elps.200600570. Electrophoresis. 2007. PMID: 17577886
-
The effect of interlaboratory variability on antimicrobial susceptibility determination.Diagn Microbiol Infect Dis. 2005 Sep;53(1):61-4. doi: 10.1016/j.diagmicrobio.2005.03.012. Diagn Microbiol Infect Dis. 2005. PMID: 16182077
-
Population distributions of minimum inhibitory concentration--increasing accuracy and utility.J Appl Microbiol. 2006 May;100(5):999-1010. doi: 10.1111/j.1365-2672.2006.02842.x. J Appl Microbiol. 2006. PMID: 16630000
-
Pharmacodynamics: relation to antimicrobial resistance.Am J Infect Control. 2006 Jun;34(5 Suppl 1):S38-45; discussion S64-73. doi: 10.1016/j.ajic.2006.05.227. Am J Infect Control. 2006. PMID: 16813981 Review.
Cited by
-
Clustering minimal inhibitory concentration data through Bayesian mixture models: An application to detect Mycobacterium tuberculosis resistance mutations.Stat Methods Med Res. 2023 Dec;32(12):2423-2439. doi: 10.1177/09622802231211010. Epub 2023 Nov 3. Stat Methods Med Res. 2023. PMID: 37920984 Free PMC article.
-
A Bayesian latent class mixture model with censoring for correlation analysis in antimicrobial resistance across populations.BMC Med Res Methodol. 2021 Sep 20;21(1):186. doi: 10.1186/s12874-021-01384-w. BMC Med Res Methodol. 2021. PMID: 34544374 Free PMC article.
-
A hierarchical Bayesian latent class mixture model with censorship for detection of linear temporal changes in antibiotic resistance.PLoS One. 2020 Jan 31;15(1):e0220427. doi: 10.1371/journal.pone.0220427. eCollection 2020. PLoS One. 2020. PMID: 32004341 Free PMC article.
-
Overview of Quantitative Methodologies to Understand Antimicrobial Resistance via Minimum Inhibitory Concentration.Animals (Basel). 2020 Aug 12;10(8):1405. doi: 10.3390/ani10081405. Animals (Basel). 2020. PMID: 32806615 Free PMC article. Review.