Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Sep;84(9):783-97.
doi: 10.1016/j.ejcb.2005.05.002.

Quantitative imaging of subcellular calcium stores in mammalian LLC-PK1 epithelial cells undergoing mitosis by SIMS ion microscopy

Affiliations

Quantitative imaging of subcellular calcium stores in mammalian LLC-PK1 epithelial cells undergoing mitosis by SIMS ion microscopy

Subhash Chandra. Eur J Cell Biol. 2005 Sep.

Abstract

Quantitative 3-D total calcium gradients, representing subcellular stored calcium, were imaged with a CAMECA IMS-3f SIMS ion microscope in cryogenically prepared frozen freeze-dried LLC-PK1 cells captured in interphase and various stages of mitosis. 39K and 23Na concentrations were also measured in the same cells. Correlative optical (or SEM) and SIMS analysis of cells revealed a redistribution of the interphase Golgi calcium store in prophase and prometaphase cells. In metaphase cells, simultaneous SIMS imaging of total calcium in both the spindle and the non-spindle cytoplasm of individual cells revealed a gradual and dynamic alignment of calcium stores in both half-spindles prior to the onset of anaphase. The anaphase cells revealed the highest local total calcium concentrations in the spindle regions behind the daughter chromosomes and the lowest in the central spindle region. The pericentriolar material in telophase cells contained calcium stores. Quantitatively, a typical metaphase cell with well-aligned calcium stores in the spindle region contained 1.1 mM total calcium in each half-spindle, 0.8 mM total calcium in the non-spindle cytoplasm, and 0.5mM total calcium in the chromosomes. At the submicron scale, the distribution of total calcium was heterogeneous in the chromosomes, metaphase spindle, and non-spindle cytoplasm. An increased binding of calcium to chromosomes is not a physiological requirement for chromosomal condensation in mitosis, since interphase nuclei and mitotic chromosomes contained comparable total calcium concentrations measured per unit volume. A significant reduction of total calcium in the non-spindle cytoplasm was observed in the metaphase, anaphase, and telophase cells, which is indicative of the limited storage of the releasable calcium pool in these specific stages of mitosis. Direct total calcium measurements in subcellular regions confirmed that both the spindle and the non-spindle cytoplasm of metaphase cells contained inositol 1,4,5-trisphosphate (IP3)-sensitive calcium stores sensitive to arginine vasopressin, thapsigargin, and calcium ionophore A23187. The dynamic alignment of calcium stores in both half-spindles may be an integral part of the time-dependent process of a cell's overall preparation for exiting the metaphase stage in mammalian LLC-PK1 cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources