Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct 19;127(41):14202-3.
doi: 10.1021/ja0556023.

Unprecedented coordination modes and demetalation pathways for unbridged polyenyl ligands. Ruthenium eta1,eta4-cycloheptadienyl complexes from allyl/alkyne cycloaddition

Affiliations

Unprecedented coordination modes and demetalation pathways for unbridged polyenyl ligands. Ruthenium eta1,eta4-cycloheptadienyl complexes from allyl/alkyne cycloaddition

Christina M Older et al. J Am Chem Soc. .

Abstract

Cationic (eta6-hexamethylbenzene)ruthenium(II) mediates the [3 + 2 + 2] cycloaddition of allyl and alkyne ligands, leading to the unexpected isolation of eta1,eta4-cycloheptadienyl complexes, an unprecedented coordination mode for transition metal complexes of simple organic rings. The nonconjugated, eta1,eta4-coordinated complex is obtained as the kinetic reaction product from treatment of the unsubstituted allyl complex with excess ethyne; this complex rearranges slowly at 80 degrees C to the thermodynamically more stable conjugated eta5-cycloheptadienyl isomer. The eta1,eta4-coordinated isomer is fluxional at room temperature, undergoing rapid and reversible equilibration with a cycloheptatriene hydride intermediate via facile beta-hydride elimination/reinsertion. The reinsertion process is remarkably regioselective, returning the nonconjugated eta1,eta4-cycloheptadienyl isomer exclusively at room temperature. For reactions incorporating dimethylacetylene dicarboxylate (DMAD) as one or both of the alkyne components, eta1,eta4-coordination appears to be both kinetically and thermodynamically favored, despite undergoing equilibration among all possible eta1,eta4-cycloheptadienyl and cycloheptatriene hydride isomers prior to arriving at one observed eta1,eta4-isomer. For this series, no isomerization to eta5-coordination is observed even upon prolonged heating. In contrast, the cyclization incorporating both DMAD and phenylacetylene proceeds directly to the eta5-cycloheptadienyl isomer at or below room temperature, indicating that eta5-coordination remains energetically accessible to this system. The DMAD-based cyclization reactions produce structurally diverse minor byproducts, including both eta1,eta4-methanocyclohexadiene and acyclic eta3,eta2-heptadienyl isomers, which have been isolated and rigorously characterized. The unusual eta1,eta4-coordination of the seven-membered ring leads to unique new organic products upon oxidative demetalation by iodinolysis. Thus, reactions with excess iodine afford bridged tricyclic cyclopropane-containing lactones or substituted cycloheptatrienes in good but sometimes variable yields, depending on the substrate and specific reaction conditions. The ruthenium in these reactions is returned in high yield as the interesting cationic mu-triiodo pseudodimer of (eta6-hexamethylbenzene)ruthenium, which is obtained as a triiodide salt. This Ru(III) complex, along with several representative Ru(II) cyclization products, has been characterized in the solid state by X-ray crystallography.

PubMed Disclaimer

Similar articles

Cited by

  • Impurity study of tecovirimat.
    Bonku EM, Qin H, Odilov A, Abduahadi S, Desta Guma S, Yang F, Xing X, Wang X, Shen J. Bonku EM, et al. Heliyon. 2024 May 2;10(9):e29559. doi: 10.1016/j.heliyon.2024.e29559. eCollection 2024 May 15. Heliyon. 2024. PMID: 38742068 Free PMC article.

Publication types

LinkOut - more resources